Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 186: 107832, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263456

RESUMEN

We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.


Asunto(s)
Peces , Agua Dulce , Animales , Filogenia , Océano Índico , Australia , Peces/genética
2.
Zootaxa ; 5128(4): 486-502, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36101160

RESUMEN

We compare several populations of the glass-perchlet Parambassis siamensis (Fowler 1937) (Teleostei: Ambassidae) sampled throughout Peninsular Malaysia to determine their degree of differentiation, using both morphological and molecular characters. Our morphological analyses do not show evidence for the presence of more than one species, with the range of morphometric and meristic characters overlapping among populations. Our genetic analysis using partial sequences of the mitochondrial gene coding for the protein cytochrome c oxidase I (COI) reveals the existence of two clades that diverge from each other by a minimum uncorrected p-distance of 2.2%. The first clade comprises of specimens from south-eastern Peninsular Malaysia (Pahang and Endau-Rompin River basins) along with those from Cambodia (lower Mekong River). The second clade comprises of specimens from western Peninsular Malaysia (Selangor, Kurau, Perak, Muda and Kerian River basins) and north-eastern Peninsular Malaysia (Terengganu River basin), along with those from Chao Phraya River basin nearby Bangkok (type locality of P. siamensis). The presence of specimens with numerous melanophores on body sides in each of these two clades indicates that body marking pattern is not a valuable taxonomic character. This finding supports the conclusion that Chanda punctulata Fraser-Brunner 1955 is a junior synonym of P. siamensis. Altogether, our results support the hypothesis that all populations of P. siamensis in Peninsular Malaysia (along those from Chao Phraya and lower Mekong basins) are conspecific, comprising two genetically distinct, although close lineages. We further discuss the phenotypic plasticity within P. siamensis in relation to lotic and lentic habitats. Finally, we briefly discuss some implications for biogeography and possible causes explaining the distribution pattern.


Asunto(s)
Peces , Genes Mitocondriales , Animales , Variación Genética , Malasia , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA