Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 2): 133086, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871105

RESUMEN

Variants found in the respiratory complex I (CI) subunit genes encoded by mitochondrial DNA can cause severe genetic diseases. However, it is difficult to establish a priori whether a single or a combination of CI variants may impact oxidative phosphorylation. Here we propose a computational approach based on coarse-grained molecular dynamics simulations aimed at investigating new CI variants. One of the primary CI variants associated with the Leber hereditary optic neuropathy (m.14484T>C/MT-ND6) was used as a test case and was investigated alone or in combination with two additional rare CI variants whose role remains uncertain. We found that the primary variant positioned in the E-channel region, which is fundamental for CI function, stiffens the enzyme dynamics. Moreover, a new mechanism for the transition between π- and α-conformation in the helix carrying the primary variant is proposed. This may have implications for the E-channel opening/closing mechanism. Finally, our findings show that one of the rare variants, located next to the primary one, further worsens the stiffening, while the other rare variant does not affect CI function. This approach may be extended to other variants candidate to exert a pathogenic impact on CI dynamics, or to investigate the interaction of multiple variants.


Asunto(s)
Complejo I de Transporte de Electrón , Simulación de Dinámica Molecular , Mutación Missense , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Humanos , Atrofia Óptica Hereditaria de Leber/genética , Biología Computacional/métodos , NADH Deshidrogenasa
2.
Cell Rep Med ; 5(2): 101383, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38272025

RESUMEN

Idebenone, the only approved treatment for Leber hereditary optic neuropathy (LHON), promotes recovery of visual function in up to 50% of patients, but we can neither predict nor understand the non-responders. Idebenone is reduced by the cytosolic NAD(P)H oxidoreductase I (NQO1) and directly shuttles electrons to respiratory complex III, bypassing complex I affected in LHON. We show here that two polymorphic variants drastically reduce NQO1 protein levels when homozygous or compound heterozygous. This hampers idebenone reduction. In its oxidized form, idebenone inhibits complex I, decreasing respiratory function in cells. By retrospectively analyzing a large cohort of idebenone-treated LHON patients, classified by their response to therapy, we show that patients with homozygous or compound heterozygous NQO1 variants have the poorest therapy response, particularly if carrying the m.3460G>A/MT-ND1 LHON mutation. These results suggest consideration of patient NQO1 genotype and mitochondrial DNA mutation in the context of idebenone therapy.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/metabolismo , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Estudios Retrospectivos , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Ubiquinona/metabolismo , Complejo I de Transporte de Electrón/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1866(3): 184291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296218

RESUMEN

Ionic liquids (ILs) are salts composed of a combination of organic or inorganic cations and anions characterized by a low melting point, often below 100 °C. This property, together with an extremely low vapor pressure, low flammability and high thermal stability, makes them suitable for replacing canonical organic solvents, with a reduction of industrial activities impact on the environment. Although in the last decades the eco-compatibility of ILs has been extensively verified through toxicological tests performed on model organisms, a detailed understanding of the interaction of these compounds with biological membranes is far from being exhaustive. In this context, we have chosen to evaluate the effect of some ILs on native membranes by using chromatophores, photosynthetic vesicles that can be isolated from Rhodobacter capsulatus, a member of the purple non­sulfur bacteria. Here, carotenoids associated with the light-harvesting complex II, act as endogenous spectral probes of the transmembrane electrical potential (ΔΨ). By measuring through time-resolved absorption spectroscopy the evolution of the carotenoid band shift induced by a single excitation of the photosynthetic reaction center, information on the ΔΨ dissipation due to ionic currents across the membrane can be obtained. We found that some ILs cause a rather fast dissipation of the transmembrane ΔΨ even at low concentrations, and that this behavior is dose-dependent. By using two different models to analyze the decay of the carotenoid signals, we attempted to interpret at a mechanistic level the marked increase of ionic permeability caused by specific ILs.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/farmacología , Líquidos Iónicos/química , Solventes/química , Análisis Espectral , Permeabilidad , Carotenoides
4.
Open Biol ; 12(11): 220198, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36349549

RESUMEN

Inhibition of respiratory complex I (CI) is becoming a promising anti-cancer strategy, encouraging the design and the use of inhibitors, whose mechanism of action, efficacy and specificity remain elusive. As CI is a central player of cellular bioenergetics, a finely tuned dosing of targeting drugs is required to avoid side effects. We compared the specificity and mode of action of CI inhibitors metformin, BAY 87-2243 and EVP 4593 using cancer cell models devoid of CI. Here we show that both BAY 87-2243 and EVP 4593 were selective, while the antiproliferative effects of metformin were considerably independent from CI inhibition. Molecular docking predictions indicated that the high efficiency of BAY 87-2243 and EVP 4593 may derive from the tight network of bonds in the quinone binding pocket, although in different sites. Most of the amino acids involved in such interactions are conserved across species and only rarely found mutated in human. Our data make a case for caution when referring to metformin as a CI-targeting compound, and highlight the need for dosage optimization and careful evaluation of molecular interactions between inhibitors and the holoenzyme.


Asunto(s)
Metformina , Neoplasias , Humanos , Simulación del Acoplamiento Molecular , Complejo I de Transporte de Electrón , Quinazolinas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , NADH Deshidrogenasa
5.
Noncoding RNA ; 8(5)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36287116

RESUMEN

Small cell neuroendocrine carcinoma is most frequently found in the lung (SCLC), but it has been also reported, albeit with a very low incidence, in the ovary. Here, we analyze a case of primary small cell carcinoma of the ovary of pulmonary type (SCCOPT), a rare and aggressive tumor with poor prognosis, whose biology and molecular features have not yet been thoroughly investigated. The patient affected by SCCOPT had a residual tumor following chemotherapy which displayed pronounced similarity with neuroendocrine tumors and lung cancer in terms of its microRNA expression profile and mTOR-downstream activation. By analyzing the metabolic markers of the neoplastic lesion, we established a likely glycolytic signature. In conclusion, this in-depth characterization of SCCOPT could be useful for future diagnoses, possibly aided by microRNA profiling, allowing clinicians to adopt the most appropriate therapeutic strategy.

6.
Sci Rep ; 12(1): 8020, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577908

RESUMEN

Anticancer strategies aimed at inhibiting Complex I of the mitochondrial respiratory chain are increasingly being attempted in solid tumors, as functional oxidative phosphorylation is vital for cancer cells. Using ovarian cancer as a model, we show that a compensatory response to an energy crisis induced by Complex I genetic ablation or pharmacological inhibition is an increase in the mitochondrial biogenesis master regulator PGC1α, a pleiotropic coactivator of transcription regulating diverse biological processes within the cell. We associate this compensatory response to the increase in PGC1α target gene expression, setting the basis for the comprehension of the molecular pathways triggered by Complex I inhibition that may need attention as drawbacks before these approaches are implemented in ovarian cancer care.


Asunto(s)
Complejo I de Transporte de Electrón , Neoplasias Ováricas , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Biogénesis de Organelos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
7.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209128

RESUMEN

The finding that the most common mitochondrial DNA mutation m.11778G>A/MT-ND4 (p.R340H) associated with Leber's hereditary optic neuropathy (LHON) induces rotenone resistance has produced a long-standing debate, because it contrasts structural evidence showing that the ND4 subunit is far away from the quinone-reaction site in complex I, where rotenone acts. However, recent cryo-electron microscopy data revealed that rotenone also binds to the ND4 subunit. We investigated the possible structural modifications induced by the LHON mutation and found that its amino acid replacement would disrupt a possible hydrogen bond between native R340 and Q139 in ND4, thereby destabilizing rotenone binding. Our analysis thus explains rotenone resistance in LHON patients as a biochemical signature of its pathogenic effect on complex I.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Resistencia a Medicamentos/genética , Complejo I de Transporte de Electrón/genética , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Rotenona/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Modelos Moleculares , Atrofia Óptica Hereditaria de Leber/metabolismo , Unión Proteica , Conformación Proteica , Rotenona/química , Relación Estructura-Actividad , Desacopladores/farmacología
8.
Life (Basel) ; 11(4)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920624

RESUMEN

The mitochondrial respiratory chain encompasses four oligomeric enzymatic complexes (complex I, II, III and IV) which, together with the redox carrier ubiquinone and cytochrome c, catalyze electron transport coupled to proton extrusion from the inner membrane. The protonmotive force is utilized by complex V for ATP synthesis in the process of oxidative phosphorylation. Respiratory complexes are known to coexist in the membrane as single functional entities and as supramolecular aggregates or supercomplexes (SCs). Understanding the assembly features of SCs has relevant biomedical implications because defects in a single protein can derange the overall SC organization and compromise the energetic function, causing severe mitochondrial disorders. Here we describe in detail the main types of SCs, all characterized by the presence of complex III. We show that the genetic alterations that hinder the assembly of Complex III, not just the activity, cause a rearrangement of the architecture of the SC that can help to preserve a minimal energetic function. Finally, the major metabolic disturbances associated with severe SCs perturbation due to defective complex III are discussed along with interventions that may circumvent these deficiencies.

9.
Biochim Biophys Acta Bioenerg ; 1862(6): 148395, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33600785

RESUMEN

Complexome Profiling (CP) combines size separation, by electrophoresis or other means, of native multimeric complexes with protein identification by mass spectrometry (MS). Peptide MS analysis of the multiple fractions in which the sample is separated, results in the creation of protein abundance profiles in function of molecular size, providing a visual output of the assembly status of a group of proteins of interest. Stable isotope labeling by amino acids in cell culture (SILAC) is an established quantitative proteomics technique that allows duplexing in the MS analysis as well as the comparison of relative protein abundances between the samples, which are processed and analyzed together. Combining SILAC and CP permitted the direct comparison of migration and abundance of the proteins present in the mitochondrial respiratory chain complexes in two different samples. This analysis, however, introduced a level of complexity in data processing for which bioinformatic tools had to be developed in order to generate the normalized protein abundance profiles. The advantages and challenges of using of this type of analysis for the characterization of two cell lines carrying pathological variants in MT-CO3 and MT-CYB is reviewed. An additional unpublished example of SILAC-CP of a cell line with an in-frame 18-bp deletion in MT-CYB is presented. In these cells, in contrast to other MT-CYB deficient models, a small proportion of complex III2 is formed and it is found associated with fully assembled complex I. This analysis also revealed a profuse accumulation of assembly intermediates containing complex III subunits UQCR10 and CYC1, as well as a profound early-stage complex IV assembly defect.


Asunto(s)
Enfermedad de Alzheimer/patología , Citocromos b/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Marcaje Isotópico/métodos , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Proteoma/análisis , Enfermedad de Alzheimer/metabolismo , Transporte de Electrón , Humanos , Células Híbridas , Espectrometría de Masas , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteoma/metabolismo
10.
Hum Mol Genet ; 29(22): 3631-3645, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33231680

RESUMEN

OPA1 mutations are the major cause of dominant optic atrophy (DOA) and the syndromic form DOA plus, pathologies for which there is no established cure. We used a 'drug repurposing' approach to identify FDA-approved molecules able to rescue the mitochondrial dysfunctions induced by OPA1 mutations. We screened two different chemical libraries by using two yeast strains carrying the mgm1I322M and the chim3P646L mutations, identifying 26 drugs able to rescue their oxidative growth phenotype. Six of them, able to reduce the mitochondrial DNA instability in yeast, have been then tested in Opa1 deleted mouse embryonic fibroblasts expressing the human OPA1 isoform 1 bearing the R445H and D603H mutations. Some of these molecules were able to ameliorate the energetic functions and/or the mitochondrial network morphology, depending on the type of OPA1 mutation. The final validation has been performed in patients' fibroblasts, allowing to select the most effective molecules. Our current results are instrumental to rapidly translating the findings of this drug repurposing approach into clinical trial for DOA and other neurodegenerations caused by OPA1 mutations.


Asunto(s)
Reposicionamiento de Medicamentos , GTP Fosfohidrolasas/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Atrofia Óptica Autosómica Dominante/tratamiento farmacológico , Animales , ADN Mitocondrial/efectos de los fármacos , Fibroblastos/efectos de los fármacos , GTP Fosfohidrolasas/antagonistas & inhibidores , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mutación/efectos de los fármacos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/patología , Linaje , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
11.
FASEB J ; 34(6): 7675-7686, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32304340

RESUMEN

Mutations in mitochondrial transfer RNA (mt-tRNA) genes are responsible for a wide range of syndromes, for which no effective treatment is available. We previously reported that transfection of the nucleotide sequence encoding for the 16-residue ß32_33 peptide from mitochondrial leucyl-tRNA synthetase ameliorates the cell phenotype caused by the mitochondrial tRNA mutations. In this work, we demonstrated that both the ß32_33 peptide linked with the known (L)-Phe-(D)-Arg-(L)-Phe-(L)-Lys (FrFK) mitochondrial penetrating sequence and, strikingly, the ß32_33 peptide per se, are able to penetrate both the plasma and mitochondrial membranes and exert the rescuing activity when exogenously administered to cells bearing the mutations m.3243A > G and m.8344A > G. These mutations are responsible for the most common and severe mt-tRNA-related diseases. In addition, we dissected the molecular determinants of constructs activity by showing that both the order of amino acids along the sequence and presence of positive charges are essential determinants of the peptide activity in cells and mt-tRNA structures stabilization in vitro. In view of future in vivo studies, this information may be required to design of ß32_33 peptide-mimetic derivatives. The ß32_33 and FrFK-ß32_33 peptides are, therefore, promising molecules for the development of therapeutic agents against diseases caused by the mt-tRNA point mutations.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Membranas Mitocondriales/metabolismo , Péptidos/metabolismo , ARN de Transferencia/metabolismo , Aminoácidos/metabolismo , Línea Celular , Humanos , Mutación Puntual/fisiología
12.
Hum Mol Genet ; 29(8): 1319-1329, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32202296

RESUMEN

Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1-/- MEFs), grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1-/- MEFs metabolic signatures and classified OPA1 variants according to their in vitro severity. Indeed, the mild p.I382M hypomorphic variant was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1-/- MEFs, and the p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations, respectively, were intermediary between the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum (ER) stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in vitro severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to select possible compounds eligible for supplementation treatment.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , GTP Fosfohidrolasas/genética , Metabolómica , Alelos , Animales , Fibroblastos/metabolismo , Humanos , Ratones , Mutación Missense/genética , Fenotipo , Proteostasis/genética
13.
Biochim Biophys Acta Bioenerg ; 1861(2): 148133, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825807

RESUMEN

The respiratory complexes are organized in supramolecular assemblies called supercomplexes thought to optimize cellular metabolism under physiological and pathological conditions. In this study, we used genetically and biochemically well characterized cells bearing the pathogenic microdeletion m.15,649-15,666 (ΔI300-P305) in MT-CYB gene, to investigate the effects of an assembly-hampered CIII on the re-organization of supercomplexes. First, we found that this mutation also affects the stability of both CI and CIV, and evidences the occurrence of a preferential structural interaction between CI and CIII2, yielding a small amount of active CI+CIII2 supercomplex. Indeed, a residual CI+CIII combined redox activity, and a low but detectable ATP synthesis driven by CI substrates are detectable, suggesting that the assembly of CIII into the CI+CIII2 supercomplex mitigates the detrimental effects of MT-CYB deletion. Second, measurements of oxygen consumption and ATP synthesis driven by NADH-linked and FADH2-linked substrates alone, or in combination, indicate a common ubiquinone pool for the two respiratory pathways. Finally, we report that prolonged incubation with rotenone enhances the amount of CI and CIII2, but reduces CIV assembly. Conversely, the antioxidant N-acetylcysteine increases CIII2 and CIV2 and partially restores respirasome formation. Accordingly, after NAC treatment, the rate of ATP synthesis increases by two-fold compared with untreated cell, while the succinate level, which is enhanced by the homoplasmic mutation, markedly decreases. Overall, our findings show that fine-tuning the supercomplexes stability improves the energetic efficiency of cells with the MT-CYB microdeletion.


Asunto(s)
Adenosina Trifosfato/metabolismo , Complejo III de Transporte de Electrones/deficiencia , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Consumo de Oxígeno , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Eliminación de Gen , Mitocondrias/genética , Oxidación-Reducción , Rotenona/farmacología
15.
Cell Rep ; 23(6): 1742-1753, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742430

RESUMEN

Mitochondria shape is controlled by membrane fusion and fission mediated by mitofusins, Opa1, and Drp1, whereas mitochondrial motility relies on microtubule motors. These processes govern mitochondria subcellular distribution, whose defects are emphasized in neurons because of their polarized structure. We have studied how perturbation of the fusion/fission balance affects mitochondria distribution in Drosophila axons. Knockdown of Marf or Opa1 resulted in progressive loss of distal mitochondria and in a distinct oxidative phosphorylation and membrane potential deficit. Downregulation of Drp1 rescued the lethality and bioenergetic defect caused by neuronal Marf RNAi, but induced only a modest restoration of axonal mitochondria distribution. Surprisingly, Drp1 knockdown rescued fragmentation and fully restored aberrant distribution of axonal mitochondria produced by Opa1 RNAi; however, Drp1 knockdown did not improve viability or mitochondria function. Our data show that proper morphology is critical for proper axonal mitochondria distribution independent of bioenergetic efficiency. The health of neurons largely depends on mitochondria function, but does not depend on shape or distribution.


Asunto(s)
Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Animales , Axones/metabolismo , Larva/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/ultraestructura , Músculos/metabolismo , Músculos/ultraestructura , Unión Neuromuscular/metabolismo , Fenotipo
16.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29518970

RESUMEN

Mammalian respiratory complex I (CI) biogenesis requires both nuclear and mitochondria-encoded proteins and is mostly organized in respiratory supercomplexes. Among the CI proteins encoded by the mitochondrial DNA, NADH-ubiquinone oxidoreductase chain 1 (ND1) is a core subunit, evolutionary conserved from bacteria to mammals. Recently, ND1 has been recognized as a pivotal subunit in maintaining the structural and functional interaction among the hydrophilic and hydrophobic CI arms. A critical role of human ND1 both in CI biogenesis and in the dynamic organization of supercomplexes has been depicted, although the proof of concept is still missing and the critical amount of ND1 protein necessary for a proper assembly of both CI and supercomplexes is not defined. By exploiting a unique model in which human ND1 is allotopically re-expressed in cells lacking the endogenous protein, we demonstrated that the lack of this protein induces a stall in the multi-step process of CI biogenesis, as well as the alteration of supramolecular organization of respiratory complexes. We also defined a mutation threshold for the m.3571insC truncative mutation in mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1), below which CI and its supramolecular organization is recovered, strengthening the notion that a certain amount of human ND1 is required for CI and supercomplexes biogenesis.


Asunto(s)
Alelos , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Mutación , NADH Deshidrogenasa/química , NADH Deshidrogenasa/genética , Respiración de la Célula , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , NADH Deshidrogenasa/metabolismo , Consumo de Oxígeno , Unión Proteica , Relación Estructura-Actividad
17.
Neurobiol Dis ; 114: 129-139, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29486301

RESUMEN

There is growing evidence that the sequence variation of mitochondrial DNA (mtDNA), which clusters in population- and/or geographic-specific haplogroups, may result in functional effects that, in turn, become relevant in disease predisposition or protection, interaction with environmental factors and ultimately in modulating longevity. To unravel functional differences between mtDNA haplogroups we here employed transmitochondrial cytoplasmic hybrid cells (cybrids) grown in galactose medium, a culture condition that forces oxidative phosphorylation, and in the presence of rotenone, the classic inhibitor of respiratory Complex I. Under this experimental paradigm we assessed functional parameters such as cell viability and respiration, ATP synthesis, reactive oxygen species production and mtDNA copy number. Our analyses show that haplogroup J1, which is common in western Eurasian populations, is the most sensitive to rotenone, whereas K1 mitogenomes orchestrate the best compensation, possibly because of the haplogroup-specific missense variants impinging on Complex I function. Remarkably, haplogroups J1 and K1 fit the genetic associations previously established with Leber's hereditary optic neuropathy (LHON) for J1, as a penetrance enhancer, and with Parkinson's disease (PD) for K1, as a protective background. Our findings provide functional evidences supporting previous well-established genetic associations of specific haplogroups with two neurodegenerative pathologies, LHON and PD. Our experimental paradigm is instrumental to highlighting the subtle functional differences characterizing mtDNA haplogroups, which will be increasingly needed to dissect the role of mtDNA genetic variation in health, disease and longevity.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Haplotipos/genética , Enfermedad de Parkinson Secundaria/genética , Plaguicidas/toxicidad , Rotenona/toxicidad , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , ADN Mitocondrial/química , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Genoma Mitocondrial/efectos de los fármacos , Haplotipos/efectos de los fármacos , Humanos , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Enfermedad de Parkinson Secundaria/inducido químicamente , Filogenia , Estructura Secundaria de Proteína
18.
Biochim Biophys Acta Bioenerg ; 1859(3): 182-190, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29269267

RESUMEN

A marked stimulation of complex II enzymatic activity was detected in cybrids bearing a homoplasmic MTCYB microdeletion causing disruption of both the activity and the assembly of complex III, but not in cybrids harbouring another MTCYB mutation affecting only the complex III activity. Moreover, complex II stimulation was associated with SDHA subunit tyrosine phosphorylation. Despite the lack of detectable hydrogen peroxide production, up-regulation of the levels of mitochondrial antioxidant defenses revealed a significant redox unbalance. This effect was also supported by the finding that treatment with N-acetylcysteine dampened the complex II stimulation, SDHA subunit tyrosine phosphorylation, and levels of antioxidant enzymes. In the absence of complex III, the cellular amount of succinate, but not fumarate, was markedly increased, indicating that enhanced activity of complex II is hampered due to the blockage of respiratory electron flow. Thus, we propose that complex II phosphorylation and stimulation of its activity represent a molecular mechanism triggered by perturbation of mitochondrial redox homeostasis due to severe dysfunction of respiratory complexes. Depending on the site and nature of the damage, complex II stimulation can either bypass the energetic deficit as an efficient compensatory mechanism, or be ineffectual, leaving cells to rely on glycolysis for survival.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Homeostasis , Mitocondrias/metabolismo , Acetilcisteína/farmacología , Citocromos b/genética , Citocromos b/metabolismo , Transporte de Electrón/efectos de los fármacos , Complejo II de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/genética , Depuradores de Radicales Libres/farmacología , Humanos , Células Híbridas/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Mutación , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Succinatos/metabolismo
19.
Hum Mutat ; 39(1): 92-102, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28967163

RESUMEN

Respiratory complex III (CIII) is the first enzymatic bottleneck of the mitochondrial respiratory chain both in its native dimeric form and in supercomplexes. The mammalian CIII comprises 11 subunits among which cytochrome b is central in the catalytic core, where oxidation of ubiquinol occurs at the Qo site. The Qo- or PEWY-motif of cytochrome b is the most conserved through species. Importantly, the highly conserved glutamate at position 271 (Glu271) has never been studied in higher eukaryotes so far and its role in the Q-cycle remains debated. Here, we showed that the homoplasmic m.15557G > A/MT-CYB, which causes the p.Glu271Lys amino acid substitution predicted to dramatically affect CIII, induces a mild mitochondrial dysfunction in human transmitochondrial cybrids. Indeed, we found that the severity of such mutation is mitigated by the proper assembly of CIII into supercomplexes, which may favor an optimal substrate channeling and buffer superoxide production in vitro.


Asunto(s)
Alelos , Citocromos b/genética , Estudios de Asociación Genética , Mutación , Fenotipo , Adenosina Trifosfato , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Línea Celular , Supervivencia Celular/genética , Secuencia Conservada , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Metabolismo Energético , Humanos , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismo
20.
Mitochondrion ; 36: 77-84, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28412540

RESUMEN

Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs deputed to non-image forming functions of the eye such as synchronization of circadian rhythms to light-dark cycle. These cells are characterized by unique electrophysiological, anatomical and biochemical properties and are usually more resistant than conventional RGCs to different insults, such as axotomy and different paradigms of stress. We also demonstrated that these cells are relatively spared compared to conventional RGCs in mitochondrial optic neuropathies (Leber's hereditary optic neuropathy and Dominant Optic Atrophy). However, these cells are affected in other neurodegenerative conditions, such as glaucoma and Alzheimer's disease. We here review the current evidences that may underlie this dichotomy. We also present our unpublished data on cell experiments demonstrating that melanopsin itself does not explain the robustness of these cells and some preliminary data on immunohistochemical assessment of mitochondria in mRGCs.


Asunto(s)
Expresión Génica , Enfermedades Mitocondriales/patología , Enfermedades del Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/biosíntesis , Estrés Fisiológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...