Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurol Neurosurg Psychiatry ; 94(9): 670-680, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414536

RESUMEN

BACKGROUND: While obesity in midlife is a risk factor for dementia, several studies suggested that obesity also protected against dementia, hence so-called obesity paradox. The current study aims to address the relationship between apolipoprotein E (APOE) genotype and obesity in dementia. METHODS: Clinical and neuropathological records of the National Alzheimer's Coordinating Center (NACC) in the USA, which longitudinally followed approximately 20 000 subjects with different cognitive statues, APOE genotype and obesity states, were reviewed. RESULTS: Obesity was associated with cognitive decline in early elderly cognitively normal individuals without APOE4, especially those with APOE2. Neuropathological analyses adjusted for dementia status showed that APOE2 carriers tended to have more microinfarcts and haemorrhages due to obesity. On the other hand, obesity was associated with a lower frequency of dementia and less cognitive impairment in individuals with mild cognitive impairment or dementia. Such trends were particularly strong in APOE4 carriers. Obesity was associated with fewer Alzheimer's pathologies in individuals with dementia. CONCLUSIONS: Obesity may accelerate cognitive decline in middle to early elderly cognitive normal individuals without APOE4 likely by provoking vascular impairments. On the other hand, obesity may ease cognitive impairment in both individuals with dementia and individuals at the predementia stage, especially those with APOE4, through protecting against Alzheimer's pathologies. These results support that APOE genotype modifies the obesity paradox in dementia.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genotipo , Obesidad/complicaciones , Obesidad/genética , Paradoja de la Obesidad
2.
J Neuropathol Exp Neurol ; 80(7): 652-662, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34283221

RESUMEN

Despite the routine use of sandwich enzyme-linked immunosorbent assays (ELISAs) for quantifying tau levels in CSF and plasma, tau accumulations in the brains of patients with Alzheimer disease (AD) have rarely been evaluated by this method. Thus, by introducing several tau ELISAs that target different epitopes, we evaluated accumulated tau levels in postmortem brains depending on disease stage, brain areas, and other AD-related changes. Notably, tau levels in insoluble fraction determined by each ELISAs differ depending on the epitopes of antibodies: non-AD control samples yield relatively high signals when an antibody against the N-terminal region of tau is used. On the other hand, ELISAs combining antibodies against the later-middle to C-terminal regions of tau produced substantially increased signals from AD samples, compared to those from non-AD controls. Such ELISAs better distinguish AD and non-AD controls, and the results are more closely associated with Braak neurofibrillary tangles stage, Aß accumulation, and glial markers. Moreover, these ELISAs can reflect the pattern of tau spread across brain regions. In conclusion, Tau ELISAs that combine antibodies against the later-middle to C-terminal regions of tau can better reflect neuropathological tau accumulation, which would enable to evaluate tau accumulation in the brain at a biochemical level.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/patología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ovillos Neurofibrilares/metabolismo
3.
J Neuroinflammation ; 18(1): 86, 2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33812385

RESUMEN

BACKGROUND: Subcortical ischemic vascular dementia, one of the major subtypes of vascular dementia, is characterized by lacunar infarcts and white matter lesions caused by chronic cerebral hypoperfusion. In this study, we used a mouse model of bilateral common carotid artery stenosis (BCAS) to investigate the role of B-cell translocation gene 2 (BTG2), an antiproliferation gene, in the white matter glial response to chronic cerebral hypoperfusion. METHODS: Btg2-/- mice and littermate wild-type control mice underwent BCAS or sham operation. Behavior phenotypes were assessed by open-field test and Morris water maze test. Brain tissues were analyzed for the degree of white matter lesions and glial changes. To further confirm the effects of Btg2 deletion on proliferation of glial cells in vitro, BrdU incorporation was investigated in mixed glial cells derived from wild-type and Btg2-/- mice. RESULTS: Relative to wild-type mice with or without BCAS, BCAS-treated Btg2-/- mice exhibited elevated spontaneous locomotor activity and poorer spatial learning ability. Although the severities of white matter lesions did not significantly differ between wild-type and Btg2-/- mice after BCAS, the immunoreactivities of GFAP, a marker of astrocytes, and Mac2, a marker of activated microglia and macrophages, in the white matter of the optic tract were higher in BCAS-treated Btg2-/- mice than in BCAS-treated wild-type mice. The expression level of Gfap was also significantly elevated in BCAS-treated Btg2-/- mice. In vitro analysis showed that BrdU incorporation in mixed glial cells in response to inflammatory stimulation associated with cerebral hypoperfusion was higher in Btg2-/- mice than in wild-type mice. CONCLUSION: BTG2 negatively regulates glial cell proliferation in response to cerebral hypoperfusion, resulting in behavioral changes.


Asunto(s)
Circulación Cerebrovascular/genética , Eliminación de Gen , Proteínas Inmediatas-Precoces/deficiencia , Proteínas Inmediatas-Precoces/genética , Neuroglía/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Sustancia Blanca/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/patología , Sustancia Blanca/patología
4.
J Diabetes Investig ; 12(6): 920-930, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33417747

RESUMEN

AIMS/INTRODUCTION: Glutamine is the most abundant amino acid in the circulation. In this study, we investigated cell signaling in the amplification of insulin secretion by glutamine. MATERIALS AND METHODS: Clonal pancreatic ß-cells MIN6-K8, wild-type B6 mouse islets, glutamate dehydrogenase (GDH) knockout clonal ß-cells (Glud1KOßCL), and glutamate-oxaloacetate transaminase 1 (GOT1) knockout clonal ß-cells (Got1KOßCL) were studied. Insulin secretion from these cells and islets was examined under various conditions, and intracellular glutamine metabolism was assessed by metabolic flux analysis. Intracellular Ca2+ concentration ([Ca2+ ]i ) was also measured. RESULTS: Glutamine dose-dependently amplified insulin secretion in the presence of high glucose in both MIN6-K8 cells and Glud1KOßCL. Inhibition of glutaminases, the enzymes that convert glutamine to glutamate, dramatically reduced the glutamine-amplifying effect on insulin secretion. A substantial amount of glutamate was produced from glutamine through direct conversion by glutaminases. Glutamine also increased [Ca2+ ]i at high glucose, which was abolished by inhibition of glutaminases. Glutamic acid dimethylester (dm-Glu), a membrane permeable glutamate precursor that is converted to glutamate in cells, increased [Ca2+ ]i as well as induced insulin secretion at high glucose. These effects of glutamine and dm-Glu were dependent on calcium influx. Glutamine also induced insulin secretion in clonal ß-cells MIN6-m14, which otherwise exhibit no insulin secretory response to glucose. CONCLUSIONS: Glutamate converted from glutamine is an essential mediator that enhances calcium signaling in the glutamine-amplifying effect on insulin secretion. Our data also suggest that glutamine exerts a permissive effect on glucose-induced insulin secretion.


Asunto(s)
Ácido Glutámico/metabolismo , Glutamina/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Animales , Aspartato Aminotransferasa Citoplasmática , Células Cultivadas , Glucosa/metabolismo , Glutamato Deshidrogenasa , Insulina/metabolismo , Islotes Pancreáticos/citología , Ratones , Transducción de Señal
5.
Diabetes ; 67(9): 1795-1806, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29954738

RESUMEN

ß-Cell-ß-cell interactions are required for normal regulation of insulin secretion. We previously found that formation of spheroid clusters (called K20-SC) from MIN6-K20 clonal ß-cells lacking incretin-induced insulin secretion (IIIS) under monolayer culture (called K20-MC) drastically induced incretin responsiveness. Here we investigated the mechanism by which an incretin-unresponsive state transforms to an incretin-responsive state using K20-SC as a model. Glutamate production by glucose through the malate-aspartate shuttle and cAMP signaling, both of which are critical for IIIS, were enhanced in K20-SC. SC formed from ß-cells deficient for aspartate aminotransferase 1, a critical enzyme in the malate-aspartate shuttle, exhibited reduced IIIS. Expression of the sodium-coupled neutral amino acid transporter 5 (SNAT5), which is involved in glutamine transport, was downregulated in K20-SC and pancreatic islets of normal mice but was upregulated in K20-MC and islets of rodent models of obesity and diabetes, both of which exhibit impaired IIIS. Inhibition of SNAT5 significantly increased cellular glutamate content and improved IIIS in islets of these models and in K20-MC. These results suggest that suppression of SNAT5 activity, which results in increased glutamate production, and enhancement of cAMP signaling endows incretin-unresponsive ß-cells with incretin responsiveness.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Incretinas/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Modelos Biológicos , Obesidad/tratamiento farmacológico , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Comunicación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Células Clonales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Resistencia a Medicamentos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Islotes Pancreáticos/ultraestructura , Masculino , Ratones Endogámicos , Microscopía Electrónica de Transmisión , Obesidad/metabolismo , Obesidad/patología , Interferencia de ARN , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Esferoides Celulares/ultraestructura , Técnicas de Cultivo de Tejidos
6.
PLoS One ; 12(11): e0187213, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29091932

RESUMEN

Incretins (GLP-1 and GIP) potentiate insulin secretion through cAMP signaling in pancreatic ß-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS) that requires two critical processes: 1) generation of cytosolic glutamate through the malate-aspartate (MA) shuttle in glucose metabolism and 2) glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse ß-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1), a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively), which participate in glutamate transport into secretory vesicles. Got1 knockout (KO) ß-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, ß-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO ß-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in ß-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying ß-cells by simultaneous disruption of multiple genes.


Asunto(s)
Aspartato Aminotransferasas/metabolismo , Ácido Glutámico/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Animales , Aspartato Aminotransferasas/genética , Línea Celular , Secreción de Insulina , Ratones , Ratones Noqueados , Mutación , Proteínas de Transporte Vesicular de Glutamato/genética
7.
J Diabetes Investig ; 7 Suppl 1: 38-43, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27186354

RESUMEN

Insulin secretion from the pancreatic ß-cell (referred to as ß-cell hereafter) plays a central role in glucose homeostasis. Impaired insulin secretion is a major factor contributing to the development of diabetes and, therefore, is an important target for treatment of the disease. Cyclic adenosine monophosphate is a key second messenger in ß-cells that amplifies insulin secretion. Incretins released by the gut potentiate insulin secretion through cyclic adenosine monophosphate signaling in ß-cells, which is the basis for the incretin-based diabetes therapies now being used worldwide. Despite its importance, the interaction between glucose metabolism and incretin/cyclic adenosine monophosphate signaling in ß-cells has long been unknown. A recent study showed that cytosolic glutamate produced by glucose metabolism in ß-cells is a key signal in incretin-induced insulin secretion. Here we review the physiological and pathophysiological roles of ß-cell glutamate signaling in incretin-induced insulin secretion.


Asunto(s)
Glucosa/metabolismo , Ácido Glutámico/metabolismo , Incretinas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Humanos , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Metabolómica , Obesidad/metabolismo , Transducción de Señal
8.
J Diabetes Res ; 2015: 261418, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25961052

RESUMEN

We recently established a novel animal model of obese type 2 diabetes (T2D), the Zucker fatty diabetes mellitus (ZFDM) rat strain harboring the fatty mutation (fa) in the leptin receptor gene. Here we performed a phenotypic characterization of the strain, focusing mainly on the prediabetic state. At 6-8 weeks of age, fa/fa male rats exhibited mild glucose intolerance and severe insulin resistance. Although basal insulin secretion was remarkably high in the isolated pancreatic islets, the responses to both glucose stimulation and the incretin GLP-1 were retained. At 10-12 weeks of age, fa/fa male rats exhibited marked glucose intolerance as well as severe insulin resistance similar to that at the earlier age. In the pancreatic islets, the insulin secretory response to glucose stimulation was maintained but the response to the incretin was diminished. In nondiabetic Zucker fatty (ZF) rats, the insulin secretory responses to both glucose stimulation and the incretin in the pancreatic islets were similar to those of ZFDM rats. As islet architecture was destroyed with age in ZFDM rats, a combination of severe insulin resistance, diminished insulin secretory response to incretin, and intrinsic fragility of the islets may cause the development of T2D in this strain.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Intolerancia a la Glucosa/fisiopatología , Resistencia a la Insulina/fisiología , Obesidad/fisiopatología , Estado Prediabético/fisiopatología , Animales , Diabetes Mellitus Tipo 2/genética , Intolerancia a la Glucosa/genética , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Obesidad/genética , Estado Prediabético/genética , Ratas , Ratas Zucker , Receptores de Leptina/genética
9.
Cell Rep ; 9(2): 661-73, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25373904

RESUMEN

Incretins, hormones released by the gut after meal ingestion, are essential for maintaining systemic glucose homeostasis by stimulating insulin secretion. The effect of incretins on insulin secretion occurs only at elevated glucose concentrations and is mediated by cAMP signaling, but the mechanism linking glucose metabolism and cAMP action in insulin secretion is unknown. We show here, using a metabolomics-based approach, that cytosolic glutamate derived from the malate-aspartate shuttle upon glucose stimulation underlies the stimulatory effect of incretins and that glutamate uptake into insulin granules mediated by cAMP/PKA signaling amplifies insulin release. Glutamate production is diminished in an incretin-unresponsive, insulin-secreting ß cell line and pancreatic islets of animal models of human diabetes and obesity. Conversely, a membrane-permeable glutamate precursor restores amplification of insulin secretion in these models. Thus, cytosolic glutamate represents the elusive link between glucose metabolism and cAMP action in incretin-induced insulin secretion.


Asunto(s)
AMP Cíclico/metabolismo , Exocitosis , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Incretinas/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Incretinas/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Metaboloma , Ratones , Ratas , Ratas Wistar , Vesículas Secretoras/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...