Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 16(9): 1462-1472, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38898213

RESUMEN

Bacteria have evolved resistance to nearly all known antibacterials, emphasizing the need to identify antibiotics that operate via novel mechanisms. Here we report a class of allosteric inhibitors of DNA gyrase with antibacterial activity against fluoroquinolone-resistant clinical isolates of Escherichia coli. Screening of a small-molecule library revealed an initial isoquinoline sulfonamide hit, which was optimized via medicinal chemistry efforts to afford the more potent antibacterial LEI-800. Target identification studies, including whole-genome sequencing of in vitro selected mutants with resistance to isoquinoline sulfonamides, unanimously pointed to the DNA gyrase complex, an essential bacterial topoisomerase and an established antibacterial target. Using single-particle cryogenic electron microscopy, we determined the structure of the gyrase-LEI-800-DNA complex. The compound occupies an allosteric, hydrophobic pocket in the GyrA subunit and has a mode of action that is distinct from the clinically used fluoroquinolones or any other gyrase inhibitor reported to date. LEI-800 provides a chemotype suitable for development to counter the increasingly widespread bacterial resistance to fluoroquinolones.


Asunto(s)
Antibacterianos , Girasa de ADN , Farmacorresistencia Bacteriana , Escherichia coli , Fluoroquinolonas , Isoquinolinas , Sulfonamidas , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química , Isoquinolinas/química , Isoquinolinas/farmacología , Isoquinolinas/síntesis química , Sulfonamidas/farmacología , Sulfonamidas/química , Sulfonamidas/síntesis química , Fluoroquinolonas/farmacología , Fluoroquinolonas/química , Fluoroquinolonas/síntesis química , Girasa de ADN/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Descubrimiento de Drogas , Regulación Alostérica/efectos de los fármacos
2.
PLoS Biol ; 21(8): e3002186, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37561817

RESUMEN

Antibiotic resistance is a continuously increasing concern for public healthcare. Understanding resistance mechanisms and their emergence is crucial for the development of new antibiotics and their effective use. The peptide antibiotic albicidin is such a promising candidate that, as a gyrase poison, shows bactericidal activity against a wide range of gram-positive and gram-negative bacteria. Here, we report the discovery of a gene amplification-based mechanism that imparts an up to 1000-fold increase in resistance levels against albicidin. RNA sequencing and proteomics data show that this novel mechanism protects Salmonella Typhimurium and Escherichia coli by increasing the copy number of STM3175 (YgiV), a transcription regulator with a GyrI-like small molecule binding domain that traps albicidin with high affinity. X-ray crystallography and molecular docking reveal a new conserved motif in the binding groove of the GyrI-like domain that can interact with aromatic building blocks of albicidin. Phylogenetic studies suggest that this resistance mechanism is ubiquitous in gram-negative bacteria, and our experiments confirm that STM3175 homologs can confer resistance in pathogens such as Vibrio vulnificus and Pseudomonas aeruginosa.


Asunto(s)
Antibacterianos , Amplificación de Genes , Antibacterianos/farmacología , Simulación del Acoplamiento Molecular , Filogenia , Bacterias Gramnegativas/genética , Bacterias Grampositivas/metabolismo
3.
Nat Catal ; 6(1): 52-67, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741192

RESUMEN

The peptide antibiotic albicidin is a DNA topoisomerase inhibitor with low-nanomolar bactericidal activity towards fluoroquinolone-resistant Gram-negative pathogens. However, its mode of action is poorly understood. We determined a 2.6 Å resolution cryoelectron microscopy structure of a ternary complex between Escherichia coli topoisomerase DNA gyrase, a 217 bp double-stranded DNA fragment and albicidin. Albicidin employs a dual binding mechanism where one end of the molecule obstructs the crucial gyrase dimer interface, while the other intercalates between the fragments of cleaved DNA substrate. Thus, albicidin efficiently locks DNA gyrase, preventing it from religating DNA and completing its catalytic cycle. Two additional structures of this trapped state were determined using synthetic albicidin analogues that demonstrate improved solubility, and activity against a range of gyrase variants and E. coli topoisomerase IV. The extraordinary promiscuity of the DNA-intercalating region of albicidins and their excellent performance against fluoroquinolone-resistant bacteria holds great promise for the development of last-resort antibiotics.

4.
Sci Adv ; 7(37): eabj5363, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516884

RESUMEN

Antibiotic metabolites and antimicrobial peptides mediate competition between bacterial species. Many of them hijack inner and outer membrane proteins to enter cells. Sensitivity of enteric bacteria to multiple peptide antibiotics is controlled by the single inner membrane protein SbmA. To establish the molecular mechanism of peptide transport by SbmA and related BacA, we determined their cryo­electron microscopy structures at 3.2 and 6 Å local resolution, respectively. The structures show a previously unknown fold, defining a new class of secondary transporters named SbmA-like peptide transporters. The core domain includes conserved glutamates, which provide a pathway for proton translocation, powering transport. The structures show an outward-open conformation with a large cavity that can accommodate diverse substrates. We propose a molecular mechanism for antibacterial peptide uptake paving the way for creation of narrow-targeted therapeutics.

5.
Cell Rep ; 36(8): 109567, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433028

RESUMEN

The bacterial DNA gyrase complex (GyrA/GyrB) plays a crucial role during DNA replication and serves as a target for multiple antibiotics, including the fluoroquinolones. Despite it being a valuable antibiotics target, resistance emergence by pathogens including Pseudomonas aeruginosa are proving problematic. Here, we describe Igy, a peptide inhibitor of gyrase, encoded by Pseudomonas bacteriophage LUZ24 and other members of the Bruynoghevirus genus. Igy (5.6 kDa) inhibits in vitro gyrase activity and interacts with the P. aeruginosa GyrB subunit, possibly by DNA mimicry, as indicated by a de novo model of the peptide and mutagenesis. In vivo, overproduction of Igy blocks DNA replication and leads to cell death also in fluoroquinolone-resistant bacterial isolates. These data highlight the potential of discovering phage-inspired leads for antibiotics development, supported by co-evolution, as Igy may serve as a scaffold for small molecule mimicry to target the DNA gyrase complex, without cross-resistance to existing molecules.


Asunto(s)
Girasa de ADN , Replicación del ADN , ADN Bacteriano , Podoviridae , Fagos Pseudomonas , Pseudomonas aeruginosa , Inhibidores de Topoisomerasa II/metabolismo , Proteínas Virales , Girasa de ADN/genética , Girasa de ADN/metabolismo , ADN Bacteriano/biosíntesis , ADN Bacteriano/genética , Podoviridae/genética , Podoviridae/metabolismo , Fagos Pseudomonas/genética , Fagos Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Nucleic Acids Res ; 49(3): 1581-1596, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33434265

RESUMEN

DNA gyrase, a type II topoisomerase found predominantly in bacteria, is the target for a variety of 'poisons', namely natural product toxins (e.g. albicidin, microcin B17) and clinically important synthetic molecules (e.g. fluoroquinolones). Resistance to both groups can be mediated by pentapeptide repeat proteins (PRPs). Despite long-term studies, the mechanism of action of these protective PRPs is not known. We show that a PRP, QnrB1 provides specific protection against fluoroquinolones, which strictly requires ATP hydrolysis by gyrase. QnrB1 binds to the GyrB protein and stimulates ATPase activity of the isolated N-terminal ATPase domain of GyrB (GyrB43). We probed the QnrB1 binding site using site-specific incorporation of a photoreactive amino acid and mapped the crosslinks to the GyrB43 protein. We propose a model in which QnrB1 binding allosterically promotes dissociation of the fluoroquinolone molecule from the cleavage complex.


Asunto(s)
Proteínas Bacterianas/metabolismo , Girasa de ADN/metabolismo , Inhibidores de Topoisomerasa II/toxicidad , Adenosina Trifosfato/metabolismo , Bacteriocinas/toxicidad , Ciprofloxacina/toxicidad , ADN/metabolismo , Escherichia coli/enzimología , Hidrólisis , Compuestos Orgánicos/toxicidad , Xanthomonas
7.
Mol Cell ; 73(4): 749-762.e5, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30661981

RESUMEN

The introduction of azole heterocycles into a peptide backbone is the principal step in the biosynthesis of numerous compounds with therapeutic potential. One of them is microcin B17, a bacterial topoisomerase inhibitor whose activity depends on the conversion of selected serine and cysteine residues of the precursor peptide to oxazoles and thiazoles by the McbBCD synthetase complex. Crystal structures of McbBCD reveal an octameric B4C2D2 complex with two bound substrate peptides. Each McbB dimer clamps the N-terminal recognition sequence, while the C-terminal heterocycle of the modified peptide is trapped in the active site of McbC. The McbD and McbC active sites are distant from each other, which necessitates alternate shuttling of the peptide substrate between them, while remaining tethered to the McbB dimer. An atomic-level view of the azole synthetase is a starting point for deeper understanding and control of biosynthesis of a large group of ribosomally synthesized natural products.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Bacteriocinas/biosíntesis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Complejos Multienzimáticos/metabolismo , Ribosomas/enzimología , Inhibidores de Topoisomerasa II/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacteriocinas/química , Bacteriocinas/farmacología , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Ribosomas/efectos de los fármacos , Ribosomas/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Difracción de Rayos X
9.
Nucleic Acids Res ; 47(3): 1373-1388, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30517674

RESUMEN

An important antibiotic target, DNA gyrase is an essential bacterial enzyme that introduces negative supercoils into DNA and relaxes positive supercoils accumulating in front of moving DNA and RNA polymerases. By altering the superhelical density, gyrase may regulate expression of bacterial genes. The information about how gyrase is distributed along genomic DNA and whether its distribution is affected by drugs is scarce. During catalysis, gyrase cleaves both DNA strands forming a covalently bound intermediate. By exploiting the ability of several topoisomerase poisons to stabilize this intermediate we developed a ChIP-Seq-based approach to locate, with single nucleotide resolution, DNA gyrase cleavage sites (GCSs) throughout the Escherichia coli genome. We identified an extended gyrase binding motif with phased 10-bp G/C content variation, indicating that bending ability of DNA contributes to gyrase binding. We also found that GCSs are enriched in extended regions located downstream of highly transcribed operons. Transcription inhibition leads to redistribution of gyrase suggesting that the enrichment is functionally significant. Our method can be applied for precise mapping of prokaryotic and eukaryotic type II topoisomerases cleavage sites in a variety of organisms and paves the way for future studies of various topoisomerase inhibitors.


Asunto(s)
Girasa de ADN/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Mapeo Cromosómico/métodos , Regulación Bacteriana de la Expresión Génica , Operón/genética , Polimorfismo de Nucleótido Simple/genética , Unión Proteica
10.
J Am Chem Soc ; 140(16): 5625-5633, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29601195

RESUMEN

Klebsazolicin (KLB) is a recently discovered Klebsiella pneumonia peptide antibiotic targeting the exit tunnel of bacterial ribosome. KLB contains an N-terminal amidine ring and four azole heterocycles installed into a ribosomally synthesized precursor by dedicated maturation machinery. Using an in vitro system for KLB production, we show that the YcaO-domain KlpD maturation enzyme is a bifunctional cyclodehydratase required for the formation of both the core heterocycles and the N-terminal amidine ring. We further demonstrate that the amidine ring is formed concomitantly with proteolytic cleavage of azole-containing pro-KLB by a cellular protease TldD/E. Members of the YcaO family are diverse enzymes known to activate peptide carbonyls during natural product biosynthesis leading to the formation of azoline, macroamidine, and thioamide moieties. The ability of KlpD to simultaneously perform two distinct types of modifications is unprecedented for known YcaO proteins. The versatility of KlpD opens up possibilities for rational introduction of modifications into various peptide backbones.


Asunto(s)
Antibacterianos/metabolismo , Klebsiella pneumoniae/enzimología , Péptidos/metabolismo , Antibacterianos/análisis , Biocatálisis , Vías Biosintéticas , Ciclización , Klebsiella pneumoniae/química , Klebsiella pneumoniae/metabolismo , Péptidos/análisis , Proteolisis
11.
Structure ; 25(10): 1549-1561.e5, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28943336

RESUMEN

TldD and TldE proteins are involved in the biosynthesis of microcin B17 (MccB17), an Escherichia coli thiazole/oxazole-modified peptide toxin targeting DNA gyrase. Using a combination of biochemical and crystallographic methods we show that E. coli TldD and TldE interact to form a heterodimeric metalloprotease. TldD/E cleaves the N-terminal leader sequence from the modified MccB17 precursor peptide, to yield mature antibiotic, while it has no effect on the unmodified peptide. Both proteins are essential for the activity; however, only the TldD subunit forms a novel metal-containing active site within the hollow core of the heterodimer. Peptide substrates are bound in a sequence-independent manner through ß sheet interactions with TldD and are likely cleaved via a thermolysin-type mechanism. We suggest that TldD/E acts as a "molecular pencil sharpener": unfolded polypeptides are fed through a narrow channel into the active site and processively truncated through the cleavage of short peptides from the N-terminal end.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Bacteriocinas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/química , Modelos Moleculares , Péptidos/metabolismo , Conformación Proteica , Especificidad por Sustrato
12.
Nat Chem Biol ; 13(10): 1129-1136, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846667

RESUMEN

Whereas screening of the small-molecule metabolites produced by most cultivatable microorganisms often results in the rediscovery of known compounds, genome-mining programs allow researchers to harness much greater chemical diversity, and result in the discovery of new molecular scaffolds. Here we report the genome-guided identification of a new antibiotic, klebsazolicin (KLB), from Klebsiella pneumoniae that inhibits the growth of sensitive cells by targeting ribosomes. A ribosomally synthesized post-translationally modified peptide (RiPP), KLB is characterized by the presence of a unique N-terminal amidine ring that is essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosomes by interfering with translation elongation. Structural analysis of the ribosome-KLB complex showed that the compound binds in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramin-B. KLB adopts a compact conformation and largely obstructs the tunnel. Engineered KLB fragments were observed to retain in vitro activity, and thus have the potential to serve as a starting point for the development of new bioactive compounds.


Asunto(s)
Antibacterianos/farmacología , Klebsiella pneumoniae/química , Péptidos/farmacología , Ribosomas/química , Ribosomas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Sitios de Unión/efectos de los fármacos , Clonación Molecular , Klebsiella pneumoniae/metabolismo , Péptidos/química , Péptidos/metabolismo , Ingeniería de Proteínas
13.
Proc Natl Acad Sci U S A ; 110(48): 19472-7, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218577

RESUMEN

Using a systematic, whole-genome analysis of enhancer activity of human-specific endogenous retroviral inserts (hsERVs), we identified an element, hsERVPRODH, that acts as a tissue-specific enhancer for the PRODH gene, which is required for proper CNS functioning. PRODH is one of the candidate genes for susceptibility to schizophrenia and other neurological disorders. It codes for a proline dehydrogenase enzyme, which catalyses the first step of proline catabolism and most likely is involved in neuromediator synthesis in the CNS. We investigated the mechanisms that regulate hsERVPRODH enhancer activity. We showed that the hsERVPRODH enhancer and the internal CpG island of PRODH synergistically activate its promoter. The enhancer activity of hsERVPRODH is regulated by methylation, and in an undermethylated state it can up-regulate PRODH expression in the hippocampus. The mechanism of hsERVPRODH enhancer activity involves the binding of the transcription factor SOX2, whch is preferentially expressed in hippocampus. We propose that the interaction of hsERVPRODH and PRODH may have contributed to human CNS evolution.


Asunto(s)
Retrovirus Endógenos/genética , Elementos de Facilitación Genéticos/genética , Prolina Oxidasa/genética , Esquizofrenia/genética , Secuencia de Bases , Línea Celular , Clonación Molecular , Metilación de ADN , Cartilla de ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Hipocampo/metabolismo , Humanos , Luciferasas , Análisis por Micromatrices , Microscopía Confocal , Datos de Secuencia Molecular , Prolina Oxidasa/metabolismo , Factores de Transcripción SOXB1/metabolismo , Análisis de Secuencia de ADN
14.
J Bacteriol ; 195(18): 4129-37, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23852863

RESUMEN

Escherichia coli microcin B (Ec-McB) is a posttranslationally modified antibacterial peptide containing multiple oxazole and thiazole heterocycles and targeting the DNA gyrase. We have found operons homologous to the Ec-McB biosynthesis-immunity operon mcb in recently sequenced genomes of several pathovars of the plant pathogen Pseudomonas syringae, and we produced two variants of P. syringae microcin B (Ps-McB) in E. coli by heterologous expression. Like Ec-McB, both versions of Ps-McB target the DNA gyrase, but unlike Ec-McB, they are active against various species of the Pseudomonas genus, including human pathogen P. aeruginosa. Through analysis of Ec-McB/Ps-McB chimeras, we demonstrate that three centrally located unmodified amino acids of Ps-McB are sufficient to determine activity against Pseudomonas, likely by allowing specific recognition by a transport system that remains to be identified. The results open the way for construction of McB-based antibacterial molecules with extended spectra of biological activity.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/química , Bacteriocinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas syringae/química , Pseudomonas syringae/metabolismo , Pseudomonas/efectos de los fármacos , Inhibidores de Topoisomerasa II , Antibacterianos/biosíntesis , Antibacterianos/química , Bacteriocinas/biosíntesis , Bacteriocinas/genética , Clonación Molecular , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Operón , Pseudomonas/clasificación , Pseudomonas syringae/genética , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
15.
J Biol Chem ; 286(30): 26308-18, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21628468

RESUMEN

Microcin B17 (McB) is a 43-amino acid antibacterial peptide targeting the DNA gyrase. The McB precursor is ribosomally produced and then post-translationally modified by the McbBCD synthase. Active mature McB contains eight oxazole and thiazole heterocycles. Here, we show that a major portion of mature McB contains an additional unusual modification, a backbone ester bond connecting McB residues 51 and 52. The modification results from an N → O shift of the Ser(52) residue located immediately downstream of one of McB thiazole heterocycles. We speculate that the N,O-peptidyl shift undergone by Ser(52) is an intermediate of post-translational modification reactions catalyzed by the McbBCD synthase that normally lead to formation of McB heterocycles.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriocinas/biosíntesis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Bacterianas/genética , Bacteriocinas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Complejos Multienzimáticos/genética , Inhibidores de Topoisomerasa II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...