RESUMEN
Oxylipins are powerful signalling compounds derived from polyunsaturated fatty acids (PUFAs) and involved in regulating the immune system response. A mass spectrometry-based method was developed and validated for the targeted profiling of 52 oxylipins (e.g., isoprostanoids, prostaglandins, epoxy- and hydroxy-fatty acids, specialized pro-resolving mediators) and 4 PUFAs in small urinary extracellular vesicles (uEVs). Ultrasound-assisted extraction using a 50:50 v/v MeOH:H2O mixture ensured optimal analytical performances. Limits of detection ranged between 10 and 400 pg/mL for oxylipins and 0.10-3 ng/mL for PUFAs. Satisfactory recoveries (85-116 %) and good intra- and inter-day precisions (RSD ≤15 %) were obtained for all the analytes. The reliability of the procedure was tested in a real case scenario by monitoring ultramarathon runners during the world Tor des Géants® (TDG) race. Both F2- and E2-isoprostanes were detected in small uEVs of the ultramarathon runners, suggesting the onset of an oxidant insult. 5-F2t-IsoP exhibited significant pre- to post-race variations, thus potentially representing a non-invasive marker of in-vivo lipid peroxidation. The presence of specialized pro-resolving mediators suggests the activation of pro-resolution signalling cascade resolving inflammation. These outcomes may help manage post-exercise recovery and improve training.
Asunto(s)
Vesículas Extracelulares , Isoprostanos , Carrera , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Vesículas Extracelulares/química , Cromatografía Líquida de Alta Presión/métodos , Isoprostanos/orina , Isoprostanos/análisis , Masculino , Adulto , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/orina , Oxilipinas/análisis , Oxilipinas/orina , Microextracción en Fase Sólida , Persona de Mediana EdadRESUMEN
We present an innovative, reliable, and antibody-free analytical method to determine multiple intact natriuretic peptides in human plasma. These biomolecules are routinely used to confirm the diagnosis and monitor the evolution of heart failure, so that their determination is essential to improve diagnosis and monitor the efficacy of treatment. However, common immunoassay kits suffer from main limitations due to high cross-reactivity with structurally similar species. In our method, we pre-treated the sample by combining salting-out with ammonium sulfate with microextraction by packed sorbent technique. Analyses were then carried out by ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The use of 3-nitrobenzyl alcohol as a supercharger reagent enhanced the ESI ionization and improved the signal-to-noise ratio. The analytical protocol showed good linearity over one order of magnitude, recovery in the range of 94-105 %, and good intra- and inter-day reproducibility (RSD<20 %), and the presence of a matrix effect. Limits of detection were in the range of pg/mL for all peptides (0.2-20 pg/mL). Stability study in plasma samples demonstrated that proper protease inhibitors need to be included in blood collection tubes to avoid peptide degradation. Preliminary analyses on plasma samples from heart failure patients allow the quantification of ANP 1-28 as the most abundant species and the detection of ANP 5-28, BNP 1-32, and BNP 5-32. The method could be used to investigate how cross-reactivity issues among structurally similar species impact determinations by ELISA kits.
Asunto(s)
Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Péptidos Natriuréticos/sangre , Cromatografía Líquida de Alta Presión , Límite de Detección , Ensayos Analíticos de Alto RendimientoRESUMEN
Oxylipins are important signalling compounds that are significantly involved in the regulation of the immune system and the resolution of inflammation. Lipid metabolism is strongly activated upon SARS-CoV-2 infection, however the modulating effects of oxylipins induced by different variants remain unexplored. Here, we compare the plasma profiles of thirty-seven oxylipins and four PUFAs in subjects infected with Wild-type, Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. The results suggest that oxidative stress and inflammation resulting from COVID-19 were highly dependent on the SARS-CoV-2 variant, and that the Wild-type elicited the strongest inflammatory storm. The Alpha and Delta variants induced a comparable lipid profile alteration upon infection, which differed significantly from Omicron. The latter variant increased the levels of pro-inflammatory mediators and decreased the levels of omega-3 PUFA in infected patients. We speculate that changes in therapeutics, vaccination, and prior infections may have a role in the alteration of the oxylipin profile besides viral mutations. The results shed new light on the evolution of the inflammatory response in COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Oxilipinas , Ácidos Grasos Insaturados , InflamaciónRESUMEN
This paper describes the AEOLUS pilot study which combines breath analysis with cardiopulmonary exercise testing (CPET) and an echocardiographic examination for monitoring heart failure (HF) patients. Ten consecutive patients with a prior clinical diagnosis of HF with reduced left ventricular ejection fraction were prospectively enrolled together with 15 control patients with cardiovascular risk factors, including hypertension, type II diabetes or chronic ischemic heart disease. Breath samples were collected at rest and during CPET coupled with exercise stress echocardiography (CPET-ESE) protocol by means of needle trap micro-extraction and were analyzed through gas-chromatography coupled with mass spectrometry. The protocol also involved using of a selected ion flow tube mass spectrometer for a breath-by-breath isoprene and acetone analysis during exercise. At rest, HF patients showed increased breath levels of acetone and pentane, which are related to altered oxidation of fatty acids and oxidative stress, respectively. A significant positive correlation was observed between acetone and the gold standard biomarker NT-proBNP in plasma (r= 0.646,p< 0.001), both measured at rest. During exercise, some exhaled volatiles (e.g., isoprene) mirrored ventilatory and/or hemodynamic adaptation, whereas others (e.g., sulfide compounds and 3-hydroxy-2-butanone) depended on their origin. At peak effort, acetone levels in HF patients differed significantly from those of the control group, suggesting an altered myocardial and systemic metabolic adaptation to exercise for HF patients. These preliminary data suggest that concomitant acquisition of CPET-ESE and breath analysis is feasible and might provide additional clinical information on the metabolic maladaptation of HF patients to exercise. Such information may refine the identification of patients at higher risk of disease worsening.
Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Humanos , Prueba de Esfuerzo/métodos , Volumen Sistólico , Acetona , Proyectos Piloto , Función Ventricular Izquierda , Pruebas Respiratorias/métodos , Insuficiencia Cardíaca/diagnóstico por imagen , Ecocardiografía/métodosRESUMEN
Variations in salivary short-chain fatty acids and hydroxy acids (e.g., lactic acid, and 3-hydroxybutyric acid) levels have been suggested to reflect the dysbiosis of human gut microbiota, which represents an additional factor involved in the onset of heart failure (HF) disease. The physical-chemical properties of these metabolites combined with the complex composition of biological matrices mean that sample pre-treatment procedures are almost unavoidable. This work describes a reliable, simple, and organic solvent free protocol for determining short-chain fatty acids and hydroxy acids in stimulated saliva samples collected from heart failure, obese, and hypertensive patients. The procedure is based on in-situ pentafluorobenzyl bromide (PFB-Br) derivatization and HiSorb sorptive extraction coupled to thermal desorption and gas chromatography-tandem mass spectrometry. The HiSorb extraction device is completely compatible with aqueous matrices, thus saving on time and materials associated with organic solvent-extraction methods. A Central Composite Face-Centred experimental design was used for the optimization of the molar ratio between PFB-Br and target analytes, the derivatization temperature, and the reaction time which were 100, 60 °C, and 180 min, respectively. Detection limits in the range 0.1-100 µM were reached using a small amount of saliva (20 µL). The use of sodium acetate-1-13C as an internal standard improved the intra- and inter-day precision of the method which ranged from 10 to 23%. The optimized protocol was successfully applied for what we believe is the first time to evaluate the salivary levels of short chain fatty acids and hydroxy acids in saliva samples of four groups of patients: i) patients admitted to hospital with acute HF symptoms, ii) patients with chronic HF symptoms, iii) patients without HF symptoms but with obesity, and iv) patients without HF symptoms but with hypertension. The first group of patients showed significantly higher levels of salivary acetic acid and lactic acid at hospital admission as well as the lowest values of hexanoic acid and heptanoic acid. Moreover, the significant high levels of acetic acid, propionic acid, and butyric acid observed in HF respect to the other patients suggest the potential link between oral bacteria and gut dysbiosis.
Asunto(s)
Insuficiencia Cardíaca , Hidroxiácidos , Humanos , Hidroxiácidos/análisis , Disbiosis , Cromatografía de Gases y Espectrometría de Masas/métodos , Ácidos Grasos Volátiles/análisis , Ácido Acético , Ácido Butírico , Ácido Láctico/análisis , Ácidos GrasosRESUMEN
Cardiovascular diseases (CVDs) are the leading cause of premature death and disability in humans and their incidence continues to increase. Oxidative stress and inflammation have been recognized as key pathophysiological factors in cardiovascular events. The targeted modulation of the endogenous mechanisms of inflammation, rather than its simple suppression, will become key in treating chronic inflammatory diseases. A comprehensive characterization of the signalling molecules involved in inflammation, such as endogenous lipid mediators, is thus needed. Here, we propose a powerful MS-based platform for the simultaneous quantitation of sixty salivary lipid mediators in CVD samples. Saliva, which represents a non-invasive and painless alternative to blood, was collected from patients suffering from acute and chronic heart failure (AHF and CHF, respectively), obesity and hypertension. Of all the patients, those with AHF and hypertension showed higher levels of isoprostanoids, which are key indexes of oxidant insult. Compared to the obese population, AHF patients showed lower levels (p < 0.02) of antioxidant omega-3 fatty acids, in line with the "malnutrition-inflammation complex syndrome" typical of HF patients. At hospital admission, AHF patients showed significantly higher levels (p < 0.001) of omega-3 DPA and lower levels (p < 0.04) of lipoxin B4 than CHF patients, suggesting a lipid rearrangement typical of the failing heart during acute decompensation. If confirmed, our results highlight the potential use of lipid mediators as predictive markers of re-acutisation episodes, thus providing opportunities for preventive intervention and a reduction in hospitalizations.
Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Insuficiencia Cardíaca , Hipertensión , Humanos , Inflamación , Enfermedad Crónica , Obesidad , Mediadores de InflamaciónRESUMEN
Microplastics and nanoplastics represent one of the major environmental issues nowadays due to their ubiquitous presence on Earth, and their high potential danger for living systems, ecosystems, and human life. The formation of both microplastics and nanoplastics strongly depends on both the type of pristine materials and the degradation processes related to biological and/or abiotic conditions. The aim of this study is to investigate the effect of two of the most relevant abiotic parameters, namely temperature and light, taken under direct control by using a Solar box, on five types of reference polymers: high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET). A multi-analytical approach was adopted to investigate in detail the first steps of plastics degradation. Samples of plastic materials at different degradation times were analyzed by means of 1H NMR spectroscopy and thermal desorption gas chromatography mass spectrometry (TD-GC-MS) technique. Several minor molecular species released during degradation were consistently identified by both techniques thus providing a comprehensive view of the various degradation products of these five types of microplastics.
RESUMEN
A key issue in GCxGC-HRMS data analysis is how to approach large-sample studies in an efficient and comprehensive way. We have developed a semi-automated data-driven workflow from identification to suspect screening, which allows highly selective monitoring of each identified chemical in a large-sample dataset. The example dataset used to illustrate the potential of the approach consisted of human sweat samples from 40 participants, including field blanks (80 samples). These samples have been collected in a Horizon 2020 project to investigate the capacity of body odour to communicate emotion and influence social behaviour. We used dynamic headspace extraction, which allows comprehensive extraction with high preconcentration capability, and has to date only been used for a few biological applications. We were able to detect a set of 326 compounds from a diverse range of chemical classes (278 identified compounds, 39 class unknowns, and 9 true unknowns). Unlike partitioning-based extraction methods, the developed method detects semi-polar (log P < 2) nitrogen and oxygen-containing compounds. However, it is unable to detect certain acids due to the pH conditions of unmodified sweat samples. We believe that our framework will open up the possibility of efficiently using GCxGC-HRMS for large-sample studies in a wide range of applications such as biological and environmental studies.
Asunto(s)
Sudor , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodosRESUMEN
The composition of exhaled breath derives from an intricate combination of normal and abnormal physiological processes that are modified by the consumption of food and beverages, circadian rhythms, bacterial infections, and genetics as well as exposure to xenobiotics. This complexity, which results wide intra- and inter-individual variability and is further influenced by sampling conditions, hinders the identification of specific biomarkers and makes it difficult to differentiate between pathological and nominally healthy subjects. The identification of a 'normal' breath composition and the relative influence of the aforementioned parameters would make breath analyses much faster for diagnostic applications. We thus compared, for the first time, the breath composition of age-matched volunteers following a vegan and a Mediterranean omnivorous diet in order to evaluate the impact of diet on breath composition. Mixed breath was collected from 38 nominally healthy volunteers who were asked to breathe into a 2 l handmade Nalophan bag. Exhalation flow rate and carbon dioxide values were monitored during breath sampling. An aliquot (100 ml) of breath was loaded into a sorbent tube (250 mg of Tenax GR, 60/80 mesh) before being analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Breath profiling using TD-GC-MS analysis identified five compounds (methanol, 1-propanol, pentane, hexane, and hexanal), thus enabling differentiation between samples collected from the different group members. Principal component analysis showed a clear separation between groups, suggesting that breath analysis could be used to study the influence of dietary habits in the fields of nutrition and metabolism. Surprisingly, one Italian woman and her brother showed extremely low breath isoprene levels (about 5 pbv), despite their normal lipidic profile and respiratory data, such as flow rate and pCO2. Further investigations to reveal the reasons behind low isoprene levels in breath would help reveal the origin of isoprene in breath.
Asunto(s)
Dieta Vegana , Compuestos Orgánicos Volátiles , Biomarcadores/análisis , Pruebas Respiratorias/métodos , Espiración , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Compuestos Orgánicos Volátiles/análisisRESUMEN
The key role of inflammation in COVID-19 induced many authors to study the cytokine storm, whereas the role of other inflammatory mediators such as oxylipins is still poorly understood. IMPRECOVID was a monocentric retrospective observational pilot study with COVID-19 related pneumonia patients (n = 52) admitted to Pisa University Hospital between March and April 2020. Our MS-based analytical platform permitted the simultaneous determination of sixty plasma oxylipins in a single run at ppt levels for a comprehensive characterisation of the inflammatory cascade in COVID-19 patients. The datasets containing oxylipin and cytokine plasma levels were analysed by principal component analysis (PCA), computation of Fisher's canonical variable, and a multivariate receiver operating characteristic (ROC) curve. Differently from cytokines, the panel of oxylipins clearly differentiated samples collected in COVID-19 wards (n = 43) and Intensive Care Units (ICUs) (n = 27), as shown by the PCA and the multivariate ROC curve with a resulting AUC equal to 0.92. ICU patients showed lower (down to two orders of magnitude) plasma concentrations of anti-inflammatory and pro-resolving lipid mediators, suggesting an impaired inflammation response as part of a prolonged and unsolvable pro-inflammatory status. In conclusion, our targeted oxylipidomics platform helped shedding new light in this field. Targeting the lipid mediator class switching is extremely important for a timely picture of a patient's ability to respond to the viral attack. A prediction model exploiting selected lipid mediators as biomarkers seems to have good chances to classify patients at risk of severe COVID-19.
Asunto(s)
COVID-19 , Oxilipinas , Humanos , Inflamación , Estudios Retrospectivos , SARS-CoV-2RESUMEN
A major challenge for breath research is the lack of standardization in sampling and analysis. To address this, a test that utilizes a standardized intervention and a defined study protocol has been proposed to explore disparities in breath research across different analytical platforms and to provide benchmark values for comparison. Specifically, thePeppermint Experimentinvolves the targeted analysis in exhaled breath of volatile constituents of peppermint oil after ingestion of the encapsulated oil. Data from thePeppermint Experimentperformed by proton transfer reaction mass spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) are presented and discussed herein, including the product ions associated with the key peppermint volatiles, namely limonene,α- andß-pinene, 1,8-cineole, menthol, menthone and menthofuran. The breath washout profiles of these compounds from 65 individuals were collected, comprising datasets from five PTR-MS and two SIFT-MS instruments. The washout profiles of these volatiles were evaluated by comparing the log-fold change over time of the product ion intensities associated with each volatile. Benchmark values were calculated from the lower 95% confidence interval of the linear time-to-washout regression analysis for all datasets combined. Benchmark washout values from PTR-MS analysis were 353 min for the sum of monoterpenes and 1,8-cineole (identical product ions), 173 min for menthol, 330 min for menthofuran, and 218 min for menthone; from SIFT-MS analysis values were 228 min for the sum of monoterpenes, 281 min for the sum of monoterpenes and 1,8-cineole, and 370 min for menthone plus 1,8-cineole. Large inter- and intra-dataset variations were observed, whereby the latter suggests that biological variability plays a key role in how the compounds are absorbed, metabolized and excreted from the body via breath. This variability seems large compared to the influence of sampling and analytical procedures, but further investigations are recommended to clarify the effects of these factors.
Asunto(s)
Mentha piperita , Protones , Benchmarking , Pruebas Respiratorias , Humanos , Espectrometría de MasasRESUMEN
Heart failure (HF) is the main cause of mortality worldwide, particularly in the elderly. N-terminal pro-brain natriuretic peptide (NT-proBNP) is the gold standard biomarker for HF diagnosis and therapy monitoring. It is determined in blood samples by the immunochemical methods generally adopted by most laboratories. Saliva analysis is a powerful tool for clinical applications, mainly due to its non-invasive and less risky sampling. This study describes a validated analytical procedure for NT-proBNP determination in saliva samples using a commercial Enzyme-Linked Immuno-Sorbent Assay. Linearity, matrix effect, sensitivity, recovery and assay-precision were evaluated. The analytical approach showed a linear behaviour of the signal throughout the concentrations tested, with a minimum detectable dose of 1 pg/mL, a satisfactory NT-proBNP recovery (95-110%), and acceptable precision (coefficient of variation ≤ 10%). Short-term (3 weeks) and long-term (5 months) stability of NT-proBNP in saliva samples under the storage conditions most frequently used in clinical laboratories (4, - 20, and - 80 °C) was also investigated and showed that the optimal storage conditions were at - 20 °C for up to 2.5 months. Finally, the method was tested for the determination of NT-proBNP in saliva samples collected from ten hospitalized acute HF patients. Preliminary results indicate a decrease in NT-proBNP in saliva from admission to discharge, thus suggesting that this procedure is an effective saliva-based point-of-care device for HF monitoring.
Asunto(s)
Insuficiencia Cardíaca/diagnóstico , Péptido Natriurético Encefálico/análisis , Péptido Natriurético Encefálico/inmunología , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/inmunología , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Pruebas Diagnósticas de Rutina , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Voluntarios Sanos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/metabolismo , Fragmentos de Péptidos/metabolismo , Estabilidad Proteica , Saliva/química , Manejo de Especímenes/métodosRESUMEN
BACKGROUND: Increasing evidence links meteorological characteristics and air pollution to physiological responses during sports activities in urban areas with different traffic levels. OBJECTIVE: The main objective of the Smart Healthy ENV (SHE, "Smart Monitoring Integrated System For A Healthy Urban Environment In Smart Cities") project was to identify the specific responses of a group of volunteers during physical activity, by monitoring their heart rates and collecting breath samples, combined with data on meteorological determinants and pollution substances obtained through fixed sensor nodes placed along city routes and remotely connected to a dedicated data acquisition server. METHODS: Monitoring stations were placed along two urban routes in Pisa, each two km long, with one located within the park beside the Arno river (green route) and the other in a crowded traffic zone (red route). Our sample participants were engaged in sports activities (N = 15, with different levels of ability) and were monitored through wearable sensors. They were first asked to walk back and forth (4 km) and then to run the same route. The experimental sessions were conducted over one day per route. A breath sample was also collected before each test. A questionnaire concerning temperature and fatigue perception was administered for all of the steps of the study over the two days. RESULTS: The heart rates of the participants were monitored in the baseline condition, during walking, and while running, and were correlated with meteorological and pollutant data and with breath composition. Changes in the heart rates and breath composition were detected during the experimental sessions. These variations were related to the physical activity and to the meteorological conditions and air pollution levels. CONCLUSIONS: The SHE project can be considered a proof-of-concept study aimed at monitoring physiological and environmental variables during physical activity in urban areas, and can be used in future studies to provide useful information to those involved in sports and the broader community.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Humanos , Proyectos PilotoRESUMEN
COVID-19 is a highly transmissible respiratory illness that has rapidly spread all over the world causing more than 115 million cases and 2.5 million deaths. Most epidemiological projections estimate that the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus causing the infection will circulate in the next few years and raise enormous economic and social issues. COVID-19 has a dramatic impact on health care systems and patient management, and is delaying or stopping breath research activities due to the risk of infection to the operators following contact with patients, potentially infected samples or contaminated equipment. In this scenario, we investigated whether virus inactivation procedures, based on a thermal treatment (60 °C for 1 h) or storage of tubes at room temperature for 72 h, could be used to allow the routine breath analysis workflow to carry on with an optimal level of safety during the pandemic. Tests were carried out using dry and humid gaseous samples containing about 100 representative chemicals found in exhaled breath and ambient air. Samples were collected in commercially available sorbent tubes, i.e. Tenax GR and a combination of Tenax TA, Carbograph 1TD and Carboxen 1003. Our results showed that all compounds were stable at room temperature up to 72 h and that sample humidity was the key factor affecting the stability of the compounds upon thermal treatment. Tenax GR-based sorbent tubes were less impacted by the thermal treatment, showing variations in the range 20%-30% for most target analytes. A significant loss of aldehydes and sulphur compounds was observed using carbon molecular sieve-based tubes. In this case, a dry purge step before inactivation at 60 °C significantly reduced the loss of the target analytes, whose variations were comparable to the method variability. Finally, a breath analysis workflow including a SARS-CoV-2 inactivation treatment is proposed.
Asunto(s)
Pruebas Respiratorias/instrumentación , COVID-19/virología , SARS-CoV-2/fisiología , Inactivación de Virus , Compuestos Orgánicos Volátiles/química , Pruebas Respiratorias/métodos , Humanos , Pandemias , Manejo de Especímenes/métodos , Temperatura , Compuestos Orgánicos Volátiles/análisisRESUMEN
Breath analysis is an alternative approach for disease diagnosis and for monitoring therapy. The lack of standardized procedures for collecting and analysing breath samples currently limits its use in clinical practice. In order to overcome this limitation, the 'Peppermint Consortium' was established within the breath community to carry out breath wash-out experiments and define reference values for a panel of compounds contained in the peppermint oil capsule. Here, we present a needle trap micro-extraction technique coupled with gas chromatography and tandem mass spectrometry for a rapid and accurate determination of alpha-pinene, beta-pinene, limonene, eucalyptol, menthofuran, menthone, menthol and menthyl acetate in mixed breath samples. Detection limits between 1 and 20 pptv were observed when 25 ml of a humidified standard gas mixture were loaded into a needle trap device at a flow rate of 10 ml min-1. Inter- and intra-day precisions were lower than 15%, thus confirming the reliability of the assay. Our procedure was used to analyse breath samples taken from a nominally healthy volunteer who was invited to swallow a 200 mg capsule of peppermint oil. Six samples were collected at various times within 6 h of ingestion. Analyte concentrations were not affected by the sampling mode (i.e. mixed vs. end-tidal fraction), whereas respiratory rate and exhalation flow rate values slightly influenced the concentration of the target compounds in breath samples.
Asunto(s)
Mentha piperita , Espectrometría de Masas en Tándem , Pruebas Respiratorias/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Reproducibilidad de los ResultadosRESUMEN
Heart failure (HF) is a cardiovascular disease affecting about 26 million people worldwide costing about $100 billons per year. HF activates several compensatory mechanisms and neurohormonal systems, so we hypothesized that the concomitant monitoring of a panel of potential biomarkers related to such conditions might help predicting HF evolution. Saliva analysis by point-of-care devices is expected to become an innovative and powerful monitoring approach since the chemical composition of saliva mirrors that of blood. The aims of this study were (i) to develop an innovative procedure combining MEPS with UHPLC-MS/MS for the simultaneous determination of 8-isoprostaglandin F2α and cortisol in saliva and (ii) to monitor lactate, uric acid, TNF-α, cortisol, α-amylase and 8-isoprostaglandin F2α concentrations in stimulated saliva samples collected from 44 HF patients during their hospitalisation due to acute HF. Limit of detection of 10 pg/mL, satisfactory recovery (95-110%), and good intra- and inter-day precisions (RSD ≤ 10%) were obtained for 8-isoprostaglandin F2α and cortisol. Salivary lactate and 8-isoprostaglandin F2α were strongly correlated with NT-proBNP. Most patients (about 70%) showed a significant decrease (a factor of 3 at least) of both lactate and 8-isoprostaglandin F2α levels at discharge, suggesting a relationship between salivary levels and improved clinical conditions during hospitalization.
Asunto(s)
Biomarcadores/metabolismo , Dinoprost/análogos & derivados , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/metabolismo , Ácido Láctico/metabolismo , Saliva/metabolismo , Anciano , Área Bajo la Curva , Dinoprost/metabolismo , Hospitalización , Humanos , Límite de Detección , Persona de Mediana Edad , Proyectos Piloto , Curva ROC , Reproducibilidad de los ResultadosRESUMEN
Biomarkers of oxidative stress are generally measured in blood and its derivatives. However, the invasiveness of blood collection makes the monitoring of such chemicals during exercise not feasible. Saliva analysis is an interesting approach in sport medicine because the collection procedure is easy-to-use and does not require specially-trained personnel. These features guarantee the collection of multiple samples from the same subject in a short span of time, thus allowing the monitoring of the subject before, during and after physical tests, training or competitions. The aim of this work was to evaluate the possibility of following the changes in the concentration of some oxidative stress markers in saliva samples taken over time by athletes under exercise. To this purpose, ketones (i.e. acetone, 2-butanone and 2-pentanone), aldehydes (i.e. propanal, butanal, and hexanal), α,ß-unsaturated aldehydes (i.e. acrolein and methacrolein) and di-carbonyls (i.e. glyoxal and methylglyoxal) were derivatized with 2,4-dinitrophenylhydrazine, and determined by ultra-high performance liquid chromatography coupled to diode array detector. Prostaglandin E2, F2/E2-isoprostanes, F2-dihomo-isoprostanes, F4-neuroprostanes, and F2-dihomo-isofuranes were also determined by a reliable analytical procedure that combines micro-extraction by packed sorbent and ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry. Overall the validation process showed that the methods have limits of detection in the range of units of ppb for carbonyls and tens to hundreds of ppt for isoprostanes and prostanoids, very good quantitative recoveries (90-110%) and intra- and inter-day precision lower than 15%. The proof of applicability of the proposed analytical approach was investigated by monitoring the selected markers of oxidative stress in ten swimmers performing a VO2max cycle ergo meter test. The results highlighted a clear increase of salivary by-products of oxidative stress during exercise, whereas a sharp decrease, approaching baseline values, of these compounds was observed in the recovery phase. This study opens up a new approach in the evaluation of oxidative stress and its relation to aerobic activity.
Asunto(s)
Prueba de Esfuerzo , Glioxal/análisis , Isoprostanos/análisis , Prostaglandinas/análisis , Saliva/química , Natación/fisiología , Adulto , Atletas , Biomarcadores/análisis , Femenino , Humanos , Masculino , Estrés Oxidativo/fisiología , Adulto JovenRESUMEN
Environmental pollution associated to plastic debris is gaining increasing relevance not only as a threat to ecosystems but also for its possible harmful effects on biota and human health. The release of toxic volatile organic compounds (VOCs) is a potential hazard associated with the environmental weathering of plastic debris. Artificial aging of reference polymers (polystyrene, polypropylene, polyethylene terephthalate, high and low density polyethylene) was performed in a Solar Box at 40⯰C and 750â¯W/m2. The volatile degradation products were determined before and after 1, 2, 3 and 4 weeks of aging using a validated analytical procedure combining headspace (HS) with needle trap microextraction (NTME) and gas chromatography/mass spectrometry (GC-MS). A progressive increase in VOCs was observed during artificial photo-degradation, whose chemical profile resulted polymer-dependent and included carbonyls, lactones, esters, acids, alcohols, ethers, aromatics. The amount of extractable fraction in polar solvents generally showed a similar trend. The same analytical procedure was used to determine VOCs released from plastic debris collected at a marine beach. All samples released harmful compounds (e.g. acrolein, benzene, propanal, methyl vinyl ketone, and methyl propenyl ketone), supporting the initial hypothesis that microplastics represent an unrecognized source of environmental pollution.
RESUMEN
This work presents a reliable analytical procedure combining micro-extraction by packed sorbent (MEPS) and ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry to determine 8-iso prostaglandin F2α, 8-iso prostaglandin E2 and prostaglandin E2 in dried blood spots (DBSs). To reach this goal, we optimized a fast semi-automated MEPS procedure for the clean-up and pre-concentration of the analytes extracted from a single DBS (50⯵L) by a 70:30 v/v methanol:water mixture. Limits of detection of about 20â¯pgâ¯mL-1, satisfactory recoveries (90-110%) and very good intra- and inter-day precisions (RSD ≤10%) were obtained for all the analytes. The innovative addition of internal standards on the filter paper before DBS sampling allowed to compensate changes in the amount of analyte during storage. Since prostanoids and isoprostanoids are biomarkers involved in the pathogenesis and progression of many diseases (e.g. ductal patency, diabetic nephropathy, and acute lung injury), our analytical method offers interesting diagnostic and prognostic opportunities in the medical field. The present method is currently used for the analysis of such biomarkers in DBSs from preterm newborns collected in the clinical setting.
Asunto(s)
Dinoprost/análogos & derivados , Dinoprostona/análogos & derivados , Dinoprostona/sangre , Pruebas con Sangre Seca/métodos , Isoprostanos/sangre , Biomarcadores/sangre , Cromatografía Líquida de Alta Presión/métodos , Dinoprost/sangre , Humanos , Recién Nacido , Límite de Detección , Microextracción en Fase Sólida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodosRESUMEN
When working with humid gaseous samples, the amount of water vapour collected in a needle trap along with volatile analytes may vary from sample to sample and decrease during the storage. This has a major impact on desorption efficiency and recovery. We propose the addition of a labelled internal standards to nullify the effect of variable humidity on the analytical performance of needle trap micro-extraction combined with gas chromatography mass spectrometry. Triple-bed (Divinylbenzene/Carbopack X/Carboxen 1000) and single-bed (Tenax GR) needles were tested with standard gaseous mixtures prepared at different relative humidity levels (85%, 50% and 10%). The standard mixtures contained twenty-five analytes representative of breath and ambient air constituents, including hydrocarbons, ketones, aldehydes, aromatics, and sulphurs, in the concentration range 0.1-700 ppbv. The two needles showed different behaviours, as recovery was independent of humidity for single-beds, whereas a low recovery (10-20%) was observed when triple-beds trapped very volatile compounds at low humidity (e.g. pentane and ethanol, 10% relative humidity. Triple-beds showed an almost quantitative recovery (>90%) of all the analytes at 50% and 85% relative humidity. This big difference was probably due to the reduced action of water vapour pressure during the desorption step. The addition of 6D-acetone and 8D-toluene to the sorbent material before gas sampling and the normalization of raw data nullified this effect, thereby lowering the variations of analyte recovery at different humidity levels down to 20%. Internal standards were also exploited to limit within 10-20% alterations in peak areas of very volatile compounds during needle storage at room temperature. This variation may results from a loss of water vapour either retained from the sorbent material and/or condensed on triple-bed needle walls. After normalization, the inter- and intra-day precision were halved to 5% and 10% in the case of single-beds, respectively, and to 15% and 20% with three-beds. The addition of an internal standard to the sorbent helps to keep the overall analytical procedure under control and improves the reliability of needle trap micro-extraction for the analysis of volatile organic compounds at ultra-trace levels.