Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19975, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968292

RESUMEN

This paper explores the potential benefits of quantum coherence and quantum discord in the non-universal quantum computing model called deterministic quantum computing with one qubit (DQC1) in supervised machine learning. We show that the DQC1 model can be leveraged to develop an efficient method for estimating complex kernel functions. We demonstrate a simple relationship between coherence consumption and the kernel function, a crucial element in machine learning. The paper presents an implementation of a binary classification problem on IBM hardware using the DQC1 model and analyzes the impact of quantum coherence and hardware noise. The advantage of our proposal lies in its utilization of quantum discord, which is more resilient to noise than entanglement.

2.
Sci Rep ; 12(1): 20720, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456619

RESUMEN

Despite great advances in explaining synaptic plasticity and neuron function, a complete understanding of the brain's learning algorithms is still missing. Artificial neural networks provide a powerful learning paradigm through the backpropagation algorithm which modifies synaptic weights by using feedback connections. Backpropagation requires extensive communication of information back through the layers of a network. This has been argued to be biologically implausible and it is not clear whether backpropagation can be realized in the brain. Here we suggest that biophotons guided by axons provide a potential channel for backward transmission of information in the brain. Biophotons have been experimentally shown to be produced in the brain, yet their purpose is not understood. We propose that biophotons can propagate from each post-synaptic neuron to its pre-synaptic one to carry the required information backward. To reflect the stochastic character of biophoton emissions, our model includes the stochastic backward transmission of teaching signals. We demonstrate that a three-layered network of neurons can learn the MNIST handwritten digit classification task using our proposed backpropagation-like algorithm with stochastic photonic feedback. We model realistic restrictions and show that our system still learns the task for low rates of biophoton emission, information-limited (one bit per photon) backward transmission, and in the presence of noise photons. Our results suggest a new functionality for biophotons and provide an alternate mechanism for backward transmission in the brain.


Asunto(s)
Axones , Encéfalo , Fotones , Neuronas , Plasticidad Neuronal
3.
Opt Express ; 28(10): 15482-15496, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403575

RESUMEN

We present the design of an optomechanical device that allows sensitive transduction of the orbital angular momentum of light. An optically induced twist imparted on the device is detected using a photonic crystal cavity optomechanical system. This device allows the measurement of the orbital angular momentum of light when photons are absorbed by the mechanical element or the detection of the presence of photons when they are scattered into new orbital angular momentum states by a sub-wavelength grating patterned on the device. Such a system allows the detection of optical pulses with an l = 1 orbital angular momentum field that have an average photon number of 3.9 × 103 at a 5 MHz repetition rate, assuming that detector noise is not limiting measurement sensitivity. This scheme can be extended to higher order orbital angular momentum states.

5.
J Biomol Struct Dyn ; 36(3): 656-662, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28150532

RESUMEN

Successful clinical experience of using cisplatin and its derivatives in cancer therapy has encouraged scientists to synthesize new metal complexes with the aim of interacting with special targets such as proteins In this regard, biological effects of [Pt(FIP)(Phen)](NO3)2 compound which contains a novel phen-imidazole ligand, FIP, was investigated on bovine liver catalase (BLC) structure and function. Various spectroscopic methods such as UV-visible, fluorescence, and circular dichroism (CD) were applied at two temperatures 25 and 37°C for kinetics and structural studies. As a consequence, the enzymatic activity decreased slightly with increasing the platinum compound's concentration up to 30 µM and then remained constant at near 80% after this concentration. On the other hand, the fluorescence quenching measurements revealed that despite slight changes in activity, catalase experiences notable alterations in three-dimensional environment around the chromophores of the enzyme structure with increasing platinum complex concentration. Moreover, quenching data showed that BLC has two binding sites for Pt complex and hydrogen bonding interactions play a major role in the binding process. Furthermore, CD spectroscopy data showed that Pt(II) complex induces significant decrease in α-helix content of the secondary structure of BLC, but notable increase in random coil proportion accompanying a slight decrease in ß-sheet content. All in all, hydrogen bonding interactions which are mainly involved in the binding process of the novel phen-imidazole compound to BLC significantly alter the protein structure but slightly change its function. This might be a promising outcome for chemotherapists and medicinal chemists to investigate in vivo properties of this novel metal complex with significant binding tendency to a macromolecule in the low concentrations without decreasing its intrinsic function.


Asunto(s)
Catalasa/química , Complejos de Coordinación/química , Imidazoles/química , Platino (Metal)/química , Animales , Sitios de Unión , Catalasa/antagonistas & inhibidores , Bovinos , Dicroismo Circular , Humanos , Cinética , Ligandos , Hígado/enzimología , Simulación del Acoplamiento Molecular , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica
6.
Int J Biol Macromol ; 95: 115-120, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27856320

RESUMEN

Aqueous solutions of reline and glyceline, the most common deep eutectic solvents, were used as a medium for Catalase reaction. By some spectroscopic methods such as UV-vis, fluorescence and circular dichroism (CD) function and structure of Catalase were investigated in aqueous solutions of reline and glyceline. These studies showed that the binding affinity of the substrate to the enzyme increased in the presence of 100mM glyceline solution, which contrasts with reline solution that probably relates to instructive changes in secondary structure of protein. Meanwhile, enzyme remained nearly 70% and 80% active in this concentration of glyceline and reline solutions respectively. In the high concentration of DES solutions, enzyme became mainly inactive but surprisingly stayed in nearly 40% active in choline chloride solution, which is the common ion species in reline and glyceline solvents. It is proposed that the chaotropic nature of choline cation might stop the reducing trend of activity in concentrated choline chloride solutions but this instructive effect is lost in aqueous deep eutectic solvents. In this regard, the presence of various concentrations of deep eutectic solvents in the aqueous media of human cells would be an activity adjuster for this important enzyme in its different operation conditions.


Asunto(s)
Biocatálisis/efectos de los fármacos , Catalasa/química , Catalasa/metabolismo , Hígado/enzimología , Solventes/farmacología , Animales , Bovinos , Temperatura
8.
Phys Rev Lett ; 110(17): 170406, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679691

RESUMEN

We propose a scheme for the observation of micro-macro entanglement in photon number based on amplifying and deamplifying a single-photon entangled state in combination with homodyne quantum state tomography. The created micro-macro entangled state, which exists between the amplification and deamplification steps, is a superposition of two components with mean photon numbers that differ by approximately a factor of three. We show that for reasonable values of photon loss it should be possible to detect micro-macro photon-number entanglement where the macrosystem has a mean number of one hundred photons or more.

9.
Phys Rev Lett ; 109(2): 023601, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-23030158

RESUMEN

We present a scheme for achieving macroscopic quantum superpositions in optomechanical systems by using single photon postselection and detecting them with nested interferometers. This method relieves many of the challenges associated with previous optical schemes for measuring macroscopic superpositions and only requires the devices to be in the weak coupling regime. It requires only small improvements on currently achievable device parameters and allows the observation of decoherence on a time scale unconstrained by the system's optical decay time. Prospects for observing novel decoherence mechanisms are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...