Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 119: 919-944, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718909

RESUMEN

Neuroinflammation and accumulation of Amyloid Beta (Aß) accompanied by deterioration of special memory are hallmarks of Alzheimer's disease (AD). Effective preventative and treatment options for AD are still needed. Microglia in AD brains are characterized by elevated levels of microRNA-17 (miR-17), which is accompanied by defective autophagy, Aß accumulation, and increased inflammatory cytokine production. However, the effect of targeting miR-17 on AD pathology and memory loss is not clear. To specifically inhibit miR-17 in microglia, we generated mannose-coated lipid nanoparticles (MLNPs) enclosing miR-17 antagomir (Anti-17 MLNPs), which are targeted to mannose receptors readily expressed on microglia. We used a 5XFAD mouse model (AD) that recapitulates many AD-related phenotypes observed in humans. Our results show that Anti-17 MLNPs, delivered to 5XFAD mice by intra-cisterna magna injection, specifically deliver Anti-17 to microglia. Anti-17 MLNPs downregulated miR-17 expression in microglia but not in neurons, astrocytes, and oligodendrocytes. Anti-17 MLNPs attenuated inflammation, improved autophagy, and reduced Aß burdens in the brains. Additionally, Anti-17 MLNPs reduced the deterioration in spatial memory and decreased anxiety-like behavior in 5XFAD mice. Therefore, targeting miR-17 using MLNPs is a viable strategy to prevent several AD pathologies. This selective targeting strategy delivers specific agents to microglia without the adverse off-target effects on other cell types. Additionally, this approach can be used to deliver other molecules to microglia and other immune cells in other organs.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Modelos Animales de Enfermedad , Manosa , Ratones Transgénicos , MicroARNs , Microglía , Nanopartículas , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , MicroARNs/metabolismo , Nanopartículas/administración & dosificación , Ratones , Microglía/metabolismo , Microglía/efectos de los fármacos , Manosa/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Lípidos , Masculino , Antagomirs/farmacología , Antagomirs/administración & dosificación
2.
Alzheimers Res Ther ; 16(1): 29, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38326859

RESUMEN

Alzheimer's disease (AD) is the sixth leading cause of death in the USA. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release pro-inflammatory products such as IL-1ß which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed reduced representation bisulfite sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed promotes the generation of IL-1ß and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4 and CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-ß (Aß) and increased microglial production of IL-1ß in 5xFAD mice. Utilizing RNA-sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1ß from macrophages in response to cytosolic Aß through cleavage of downstream effector Gasdermin D (GSDMD). Therefore, here we unravel the role for CASP11 and GSDMD in the generation of IL-1ß in response to Aß and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential DNA methylation in AD microglia contributes to the progression of AD pathobiology. Thus, we identify CASP4 as a potential target for immunotherapies for the treatment and prevention of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Caspasas Iniciadoras , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Metilación de ADN , Inflamación/patología , Ratones Transgénicos , Microglía/metabolismo , Caspasas Iniciadoras/metabolismo
3.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693600

RESUMEN

Alzheimer's Disease (AD) is the 6th leading cause of death in the US. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release proinflammatory products such as IL-1ß which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed Reduced Representation Bisulfite Sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed, can be involved in generation of IL-1ß and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4, CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-ß (Aß) and increased microglial production of IL-1ß in 5xFAD mice. Utilizing RNA sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1ß from macrophages in response to cytosolic Aß through cleavage of downstream effector Gasdermin D (G SDMD). We describe a role for CASP11 and GSDMD in the generation of IL-1ß in response to Aß and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential methylation in AD microglia contributes to the progression of AD pathobiology, thus identifying CASP4 as a potential target for immunotherapies for the treatment of AD.

4.
Nat Commun ; 14(1): 1652, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964178

RESUMEN

During intracellular infection, T follicular helper (TFH) and T helper 1 (TH1) cells promote humoral and cell-mediated responses, respectively. Another subset, CD4-cytotoxic T lymphocytes (CD4-CTLs), eliminate infected cells via functions typically associated with CD8+ T cells. The mechanisms underlying differentiation of these populations are incompletely understood. Here, we identify the transcription factor Aiolos as a reciprocal regulator of TFH and CD4-CTL programming. We find that Aiolos deficiency results in downregulation of key TFH transcription factors, and consequently reduced TFH differentiation and antibody production, during influenza virus infection. Conversely, CD4-CTL programming is elevated, including enhanced Eomes and cytolytic molecule expression. We further demonstrate that Aiolos deficiency allows for enhanced IL-2 sensitivity and increased STAT5 association with CD4-CTL gene targets, including Eomes, effector molecules, and IL2Ra. Thus, our collective findings identify Aiolos as a pivotal regulator of CD4-CTL and TFH programming and highlight its potential as a target for manipulating CD4+ T cell responses.


Asunto(s)
Linfocitos T Colaboradores-Inductores , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Linfocitos T CD8-positivos , Linfocitos T CD4-Positivos , Diferenciación Celular
5.
Nature ; 614(7949): 762-766, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653453

RESUMEN

Differentiated somatic mammalian cells putatively exhibit species-specific division limits that impede cancer but may constrain lifespans1-3. To provide immunity, transiently stimulated CD8+ T cells undergo unusually rapid bursts of numerous cell divisions, and then form quiescent long-lived memory cells that remain poised to reproliferate following subsequent immunological challenges. Here we addressed whether T cells are intrinsically constrained by chronological or cell-division limits. We activated mouse T cells in vivo using acute heterologous prime-boost-boost vaccinations4, transferred expanded cells to new mice, and then repeated this process iteratively. Over 10 years (greatly exceeding the mouse lifespan)5 and 51 successive immunizations, T cells remained competent to respond to vaccination. Cells required sufficient rest between stimulation events. Despite demonstrating the potential to expand the starting population at least 1040-fold, cells did not show loss of proliferation control and results were not due to contamination with young cells. Persistent stimulation by chronic infections or cancer can cause T cell proliferative senescence, functional exhaustion and death6. We found that although iterative acute stimulations also induced sustained expression and epigenetic remodelling of common exhaustion markers (including PD1, which is also known as PDCD1, and TOX) in the cells, they could still proliferate, execute antimicrobial functions and form quiescent memory cells. These observations provide a model to better understand memory cell differentiation, exhaustion, cancer and ageing, and show that functionally competent T cells can retain the potential for extraordinary population expansion and longevity well beyond their organismal lifespan.


Asunto(s)
División Celular , Senescencia Celular , Longevidad , Activación de Linfocitos , Linfocitos T , Animales , Ratones , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Memoria Inmunológica , Longevidad/inmunología , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T/citología , Linfocitos T/inmunología , Senescencia Celular/inmunología , Senescencia Celular/fisiología , Inmunización Secundaria , Vacunación , Traslado Adoptivo , Factores de Tiempo , Infecciones/inmunología , Enfermedad Crónica , Epigénesis Genética
6.
Nat Immunol ; 24(2): 280-294, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36543960

RESUMEN

T cell dysfunctionality prevents the clearance of chronic infections and cancer. Furthermore, epigenetic programming in dysfunctional CD8+ T cells limits their response to immunotherapies, including immune checkpoint blockade (ICB). However, it is unclear which upstream signals drive acquisition of dysfunctional epigenetic programs, and whether therapeutically targeting these signals can remodel terminally dysfunctional T cells to an ICB-responsive state. Here we innovate an in vitro model system of stable human T cell dysfunction and show that chronic TGFß1 signaling in posteffector CD8+ T cells accelerates their terminal dysfunction through stable epigenetic changes. Conversely, boosting bone morphogenetic protein (BMP) signaling while blocking TGFß1 preserved effector and memory programs in chronically stimulated human CD8+ T cells, inducing superior responses to tumors and synergizing the ICB responses during chronic viral infection. Thus, rebalancing TGFß1/BMP signals provides an exciting new approach to unleash dysfunctional CD8+ T cells and enhance T cell immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos , Virosis , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo
7.
Elife ; 112022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069787

RESUMEN

Ascorbate (vitamin C) is an essential micronutrient in humans. The severe chronic deficiency of ascorbate, termed scurvy, has long been associated with increased susceptibility to infections. How ascorbate affects the immune system at the cellular and molecular levels remained unclear. From a micronutrient analysis, we identified ascorbate as a potent enhancer for antibody response by facilitating the IL-21/STAT3-dependent plasma cell differentiation in mouse and human B cells. The effect of ascorbate is unique as other antioxidants failed to promote plasma cell differentiation. Ascorbate is especially critical during early B cell activation by poising the cells to plasma cell lineage without affecting the proximal IL-21/STAT3 signaling and the overall transcriptome. As a cofactor for epigenetic enzymes, ascorbate facilitates TET2/3-mediated DNA modification and demethylation of multiple elements at the Prdm1 locus. DNA demethylation augments STAT3 association at the Prdm1 promoter and a downstream enhancer, thus ensuring efficient gene expression and plasma cell differentiation. The results suggest that an adequate level of ascorbate is required for antibody response and highlight how micronutrients may regulate the activity of epigenetic enzymes to regulate gene expression. Our findings imply that epigenetic enzymes can function as sensors to gauge the availability of metabolites and influence cell fate decisions.


Asunto(s)
Ácido Ascórbico , Vitaminas , Animales , Ácido Ascórbico/farmacología , Diferenciación Celular , Epigénesis Genética , Epigenómica , Humanos , Ratones
8.
Annu Rev Immunol ; 40: 387-411, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35119910

RESUMEN

Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry.


Asunto(s)
Cromatina , Redes Reguladoras de Genes , Animales , Regulación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción/genética
9.
Cell Rep ; 37(2): 109796, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644568

RESUMEN

To gain insight into the signaling determinants of effector-associated DNA methylation programming among CD8 T cells, we explore the role of interleukin (IL)-12 in the imprinting of IFNg expression during CD8 T cell priming. We observe that anti-CD3/CD28-mediated stimulation of human naive CD8 T cells is not sufficient to induce substantial demethylation of the IFNg promoter. However, anti-CD3/CD28 stimulation in the presence of the inflammatory cytokine, IL-12, results in stable demethylation of the IFNg locus that is commensurate with IFNg expression. IL-12-associated demethylation of the IFNg locus is coupled to cell division through TET2-dependent demethylation in an ex vivo human chimeric antigen receptor T cell model system and an in vivo immunologically competent murine system. Collectively, these data illustrate that IL-12 signaling promotes TET2-mediated effector DNA demethylation programming in CD8 T cells and serve as proof of concept that cytokines can guide induction of epigenetically regulated traits for T cell-based immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Interferón gamma/metabolismo , Interleucina-12/farmacología , Coriomeningitis Linfocítica/enzimología , Células T de Memoria/efectos de los fármacos , Animales , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Modelos Animales de Enfermedad , Humanos , Memoria Inmunológica/efectos de los fármacos , Interferón gamma/genética , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Células T de Memoria/enzimología , Células T de Memoria/inmunología , Células T de Memoria/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Prueba de Estudio Conceptual , Transducción de Señal
11.
J Leukoc Biol ; 108(1): 151-168, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386457

RESUMEN

Allergic asthma and influenza are common respiratory diseases with a high probability of co-occurrence. During the 2009 influenza pandemic, hospitalized patients with influenza experienced lower morbidity if asthma was an underlying condition. We have previously demonstrated that acute allergic asthma protects mice from severe influenza and have implicated eosinophils in the airways of mice with allergic asthma as participants in the antiviral response. However, very little is known about how eosinophils respond to direct exposure to influenza A virus (IAV) or the microenvironment in which the viral burden is high. We hypothesized that eosinophils would dynamically respond to the presence of IAV through phenotypic, transcriptomic, and physiologic changes. Using our mouse model of acute fungal asthma and influenza, we showed that eosinophils in lymphoid tissues were responsive to IAV infection in the lungs and altered surface expression of various markers necessary for cell activation in a niche-specific manner. Siglec-F expression was altered in a subset of eosinophils after virus exposure, and those expressing high Siglec-F were more active (IL-5Rαhi CD62Llo ). While eosinophils exposed to IAV decreased their overall transcriptional activity and mitochondrial oxygen consumption, transcription of genes encoding viral recognition proteins, Ddx58 (RIG-I), Tlr3, and Ifih1 (MDA5), were up-regulated. CD8+ T cells from IAV-infected mice expanded in response to IAV PB1 peptide-pulsed eosinophils, and CpG methylation in the Tbx21 promoter was reduced in these T cells. These data offer insight into how eosinophils respond to IAV and help elucidate alternative mechanisms by which they regulate antiviral immune responses during IAV infection.


Asunto(s)
Eosinófilos/inmunología , Virus de la Influenza A/inmunología , Animales , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos Virales/inmunología , Asma/inmunología , Asma/patología , Asma/virología , Células de la Médula Ósea/patología , Linfocitos T CD8-positivos/inmunología , Respiración de la Célula/genética , Pollos , Desmetilación del ADN , Perros , Eosinófilos/metabolismo , Epigénesis Genética , Femenino , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Pulmón/patología , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Fenotipo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Proteínas de Dominio T Box/metabolismo , Transcriptoma/genética , Regulación hacia Arriba
12.
Nat Immunol ; 21(5): 578-587, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32231298

RESUMEN

The pool of beta cell-specific CD8+ T cells in type 1 diabetes (T1D) sustains an autoreactive potential despite having access to a constant source of antigen. To investigate the long-lived nature of these cells, we established a DNA methylation-based T cell 'multipotency index' and found that beta cell-specific CD8+ T cells retained a stem-like epigenetic multipotency score. Single-cell assay for transposase-accessible chromatin using sequencing confirmed the coexistence of naive and effector-associated epigenetic programs in individual beta cell-specific CD8+ T cells. Assessment of beta cell-specific CD8+ T cell anatomical distribution and the establishment of stem-associated epigenetic programs revealed that self-reactive CD8+ T cells isolated from murine lymphoid tissue retained developmentally plastic phenotypic and epigenetic profiles relative to the same cells isolated from the pancreas. Collectively, these data provide new insight into the longevity of beta cell-specific CD8+ T cell responses and document the use of this methylation-based multipotency index for investigating human and mouse CD8+ T cell differentiation.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Diabetes Mellitus Tipo 1/inmunología , Células Secretoras de Insulina/inmunología , Células Madre Pluripotentes/fisiología , Adolescente , Adulto , Animales , Autoantígenos/inmunología , Plasticidad de la Célula , Células Cultivadas , Metilación de ADN , Epigénesis Genética , Femenino , Citometría de Flujo , Humanos , Memoria Inmunológica , Masculino , Ratones , Análisis de la Célula Individual , Adulto Joven
13.
Nat Immunol ; 21(4): 412-421, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066954

RESUMEN

Central memory T (TCM) cells patrol lymph nodes and perform conventional memory responses on restimulation: proliferation, migration and differentiation into diverse T cell subsets while also self-renewing. Resident memory T (TRM) cells are parked within single organs, share properties with terminal effectors and contribute to rapid host protection. We observed that reactivated TRM cells rejoined the circulating pool. Epigenetic analyses revealed that TRM cells align closely with conventional memory T cell populations, bearing little resemblance to recently activated effectors. Fully differentiated TRM cells isolated from small intestine epithelium exhibited the potential to differentiate into TCM cells, effector memory T cells and TRM cells on recall. Ex-TRM cells, former intestinal TRM cells that rejoined the circulating pool, heritably maintained a predilection for homing back to their tissue of origin on subsequent reactivation and a heightened capacity to redifferentiate into TRM cells. Thus, TRM cells can rejoin the circulation but are advantaged to re-form local TRM when called on.


Asunto(s)
Plasticidad de la Célula/inmunología , Memoria Inmunológica/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Diferenciación Celular/inmunología , Femenino , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Ratones , Ratones Endogámicos C57BL
14.
Nature ; 571(7764): 265-269, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31207605

RESUMEN

Cytotoxic T cells are essential mediators of protective immunity to viral infection and malignant tumours and are a key target of immunotherapy approaches. However, prolonged exposure to cognate antigens often attenuates the effector capacity of T cells and limits their therapeutic potential1-4. This process, known as T cell exhaustion or dysfunction1, is manifested by epigenetically enforced changes in gene regulation that reduce the expression of cytokines and effector molecules and upregulate the expression of inhibitory receptors such as programmed cell-death 1 (PD-1)5-8. The underlying molecular mechanisms that induce and stabilize the phenotypic and functional features of exhausted T cells remain poorly understood9-12. Here we report that the development and maintenance of populations of exhausted T cells in mice requires the thymocyte selection-associated high mobility group box (TOX) protein13-15. TOX is induced by high antigen stimulation of the T cell receptor and correlates with the presence of an exhausted phenotype during chronic infections with lymphocytic choriomeningitis virus in mice and hepatitis C virus in humans. Removal of its DNA-binding domain reduces the expression of PD-1 at the mRNA and protein level, augments the production of cytokines and results in a more polyfunctional T cell phenotype. T cells with this deletion initially mediate increased effector function and cause more severe immunopathology, but ultimately undergo a massive decline in their quantity, notably among the subset of TCF-1+ self-renewing T cells. Altogether, we show that TOX is a critical factor for the normal progression of T cell dysfunction and the maintenance of exhausted T cells during chronic infection, and provide a link between the suppression of effector function intrinsic to CD8 T cells and protection against immunopathology.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/virología , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Homeodominio/metabolismo , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Animales , Proliferación Celular , Enfermedad Crónica , Citocinas/inmunología , Citocinas/metabolismo , Epigénesis Genética , Femenino , Regulación de la Expresión Génica/inmunología , Hepacivirus/inmunología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Memoria Inmunológica , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Fenotipo , Timocitos/citología , Timocitos/inmunología , Transcripción Genética
15.
Nature ; 552(7685): 404-409, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29236683

RESUMEN

Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Desdiferenciación Celular , Memoria Inmunológica , Animales , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , ADN Metiltransferasa 3A , Epigénesis Genética , Femenino , Memoria Inmunológica/genética , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Cell ; 170(1): 142-157.e19, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648661

RESUMEN

Immune-checkpoint-blockade (ICB)-mediated rejuvenation of exhausted T cells has emerged as a promising approach for treating various cancers and chronic infections. However, T cells that become fully exhausted during prolonged antigen exposure remain refractory to ICB-mediated rejuvenation. We report that blocking de novo DNA methylation in activated CD8 T cells allows them to retain their effector functions despite chronic stimulation during a persistent viral infection. Whole-genome bisulfite sequencing of antigen-specific murine CD8 T cells at the effector and exhaustion stages of an immune response identified progressively acquired heritable de novo methylation programs that restrict T cell expansion and clonal diversity during PD-1 blockade treatment. Moreover, these exhaustion-associated DNA-methylation programs were acquired in tumor-infiltrating PD-1hi CD8 T cells, and approaches to reverse these programs improved T cell responses and tumor control during ICB. These data establish de novo DNA-methylation programming as a regulator of T cell exhaustion and barrier of ICB-mediated T cell rejuvenation.


Asunto(s)
Linfocitos T CD8-positivos/citología , Epigénesis Genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adenocarcinoma/tratamiento farmacológico , Animales , Linfocitos T CD8-positivos/inmunología , Metilación de ADN , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neoplasias de la Próstata/tratamiento farmacológico , Virosis/tratamiento farmacológico
17.
J Exp Med ; 214(6): 1593-1606, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28490440

RESUMEN

Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epigénesis Genética , Homeostasis/genética , Homeostasis/inmunología , Memoria Inmunológica/genética , Traslado Adoptivo , Linfocitos T CD8-positivos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Proliferación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Citocinas/farmacología , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Epigénesis Genética/efectos de los fármacos , Sitios Genéticos , Genoma Humano , Trasplante de Células Madre Hematopoyéticas , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Huésped Inmunocomprometido , Memoria Inmunológica/efectos de los fármacos , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Fenotipo , Receptores CCR7/metabolismo , Donantes de Tejidos
18.
Trends Mol Med ; 22(12): 1000-1011, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27825667

RESUMEN

Prolonged exposure of CD8+ T cells to their cognate antigen can result in exhaustion of effector functions enabling the persistence of infected or transformed cells. Recent advances in strategies to rejuvenate host effector function using Immune Checkpoint Blockade have resulted in tremendous success towards the treatment of several cancers. However, it is unclear if T cell rejuvenation results in long-lived antitumor functions. Emerging evidence suggests that T cell exhaustion may also represent a significant impediment in sustaining long-lived antitumor activity by chimeric antigen receptor T cells. Here, we discuss current findings regarding transcriptional regulation during T cell exhaustion and address the hypothesis that epigenetics may be a potential barrier to achieving the maximum benefit of T cell-based immunotherapies.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/terapia , Linfocitos T/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/trasplante , Metilación de ADN , Epigénesis Genética , Ingeniería Genética/métodos , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/genética , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/trasplante
19.
Eur J Immunol ; 46(7): 1548-62, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27230488

RESUMEN

T-cell-based immunological memory has the potential to provide the host with life-long protection against pathogen reexposure and thus offers tremendous promise for the design of vaccines targeting chronic infections or cancer. In order to exploit this potential in the design of new vaccines, it is necessary to understand how and when memory T cells acquire their poised effector potential, and moreover, how they maintain these properties during homeostatic proliferation. To gain insight into the persistent nature of memory T-cell functions, investigators have turned their attention to epigenetic mechanisms. Recent efforts have revealed that many of the properties acquired among memory T cells are coupled to stable changes in DNA methylation and histone modifications. Furthermore, it has recently been reported that the delineating features among memory T cells subsets are also linked to distinct epigenetic events, such as permissive and repressive histone modifications and DNA methylation programs, providing exciting new hypotheses regarding their cellular ancestry. Here, we review recent studies focused on epigenetic programs acquired during effector and memory T-cell differentiation and discuss how these data may shed new light on the developmental path for generating long-lived CD8(+) T-cell memory.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Memoria Inmunológica/genética , Animales , Linfocitos T CD8-positivos/citología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Metilación de ADN , Histonas/metabolismo , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Transcripción Genética
20.
J Infect Dis ; 209(9): 1459-68, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24273183

RESUMEN

Secondary bacterial pneumonia is a significant cause of morbidity and mortality during influenza, despite routine use of standard antibiotics. Antibiotic-induced immunopathology associated with bacterial cell wall lysis has been suggested to contribute to these poor outcomes. Using Streptococcus pneumoniae in a well-established murine model of secondary bacterial pneumonia (SBP) following influenza, we stratified disease severity based on pneumococcal load in the lungs via in vivo bioluminescence imaging. Ampicillin treatment cured mice with mild pneumonia but was ineffective against severely pneumonic mice, despite effective bacterial killing. Adjunctive dexamethasone therapy improved ampicillin-induced immunopathology and improved outcomes in mice with severe SBP. However, early dexamethasone therapy during primary influenza infection impaired lung adaptive immunity as manifest by increased viral titers, with an associated loss of its protective functions in SBP. These data support adjunctive clinical use of corticosteroids in severe cases of community-acquired pneumonia.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Dexametasona/farmacología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Neumonía Neumocócica/tratamiento farmacológico , Inmunidad Adaptativa/efectos de los fármacos , Ampicilina/farmacología , Animales , Modelos Animales de Enfermedad , Perros , Femenino , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Estimación de Kaplan-Meier , Pulmón/patología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...