RESUMEN
This research introduced a novel nano catalyst, LDH@PTRMS@DCMBA@CuI, developed from nano copper immobilized on a layered double hydroxide modified with a new type of sulfonamide: N 1,N 3-dicarbamimidoylbenzene-1,3-disulfonamide (DCMBA). This catalyst demonstrated significant activity and selectivity in synthesizing 5-amino-1H-pyrazole-5-carbonitrile derivatives. The derivatives were produced via a three-component one-pot reaction combining benzaldehydes, malononitrile, and phenyl hydrazine in H2O/EtOH solvent at 55 °C. This innovative synthesis strategy offered several advantages, including eco-friendliness, simplicity, stability, mild reaction conditions, easy purification of products, short reaction times (15-27 min), and excellent yields (85-93%). Additionally, the green methodology was validated by the catalyst's reusability over four consecutive cycles without significant loss of catalytic activity.
RESUMEN
[This corrects the article DOI: 10.1039/D2RA05070F.].
RESUMEN
[This corrects the article DOI: 10.1039/D3RA03058J.].
RESUMEN
This study aimed to create an innovative acidic nano catalyst capable of producing pyrimido[4,5-b]quinolines under environmentally friendly conditions. To achieve this objective, 1,3-benzenedisulfonyl amide (BDSA) was immobilized onto the surface of magnetic graphene oxide (GO/Fe3O4@PTRMS@BDSA@SO3H), and its surface was acidified using chlorosulfonic acid. The synthesized catalyst's structure was thoroughly examined and verified through various analyses, including FTIR, EDX, elemental mapping, FESEM, XRD, TGA, and DSC. This novel nano catalyst exhibited exceptional activity and selectivity in synthesizing pyrimido[4,5-b]quinoline derivatives under solvent-free conditions, at low temperatures, and with high efficiency. Its catalytic effectiveness stemmed from features such as easy and eco-friendly synthesis methods, abundant accessible catalytic sites, a high surface area, remarkable selectivity, and facile separation from the reaction medium. Additionally, the catalyst proved to be cost-effective, safe, scalable, and reusable for up to four times.
RESUMEN
This research developed a new nanocatalyst by incorporating nanocopper iodide onto the surface of a layered double hydroxides modified. This new nanocatalyst enables the green synthesis of tetrahydrobenzo[b]pyrans and 2-amino-4H-chromene derivatives through a one-pot, three-component reaction, demonstrating remarkable activity and selectivity. Key advantages of this method include increased products yield (86-96%), rapid reaction kinetics (5-23 minutes), low reaction temperature (40 °C), synthesis of new products, straightforward purification methods, catalyst recyclability (up to 4 cycles), and solvent-free conditions.
RESUMEN
The primary objective of this investigation was to develop a new nanocatalyst that could produce amides by oxidative amidation of benzyl alcohol, thereby reducing its environmental harm. To achieve this, Pd nanoparticle-immobilized crosslinked sodium alginate-modified iron-based metal-organic framework Fe(BTC) (Fe(BTC)@SA/ED/Pd), with excellent activity and selectivity in modified oxidative amidation of benzyl alcohol with amines, has been described. Crosslinked sodium alginate was modified on iron-based metal-organic framework Fe(BTC). It is worth noting that Pd nanoparticles were immobilized for the first time on a novel nanocomposite based on the Fe(BTC) MOF and crosslinked sodium alginate for tandem oxidative amidation to improve the eco-friendliness and economic efficiency of the process. The synergic effects of Fe(BTC), sodium alginate, and Pd NPs are important factors influencing the catalytic activity. Easy and green synthesis methods, availability of materials, high Pd loading, available catalytic sites, high surface area, high selectivity, and simple separation from the reaction medium are effective properties in catalytic activity.
RESUMEN
A novel catalyst based on layered double hydroxides coated with copper nitrate [LDH@(3-chloropropyl)trimethoxysilane@N1,N4-bis(4,6-diamino-1,3,5-triazin-2-yl)benzene-1,4-disulfonamide@Cu] was successfully synthesized. The structure of the new synthesized catalyst was investigated and confirmed using different analytical techniques, such as Fourier-transform infrared spectroscopy (FTIR), energy-scattered X-ray spectroscopy (EDX) mapping, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and heat gravity/heat derivatization (TGA/DSC). The skilled catalyst proved its efficiency for one-pot three-component synthesis of pyrano[2,3-d]pyrimidine and new dihydropyrazolo[4',3':5,6]pyrano[2,3-d]pyrimidine-dione derivatives. Using this efficient catalyst, products were synthesized with a high yield, in a short time, and under soft and solvent-free conditions. The catalyst can be recovered and reused four times without a significant loss of efficiency.
RESUMEN
A new magnetic nano-catalyst system based on graphene oxide was designed and manufactured (GO@Fe3O4@3-chloropropyltrimethoxysilane@(Z)-N'-(2-hydroxybenzylidene)-4-(pyridin-4-yl)benzohydrazide@Cu(II)), and it was checked and confirmed by various analyzes such as FTIR, XRD, EDX, MAPPING, TGA/DSC, VSM and FESEM. This nano-catalyst was used in the three-component one-pot synthesis of quinazoline derivatives. The products were obtained using this efficient catalyst with high efficiency in short time and solvent-free conditions. Easy separation and acceptable recyclability are other advantages of this new nano-catalyst. Also, the catalyst can be recycled 4 times without a significant change in its efficiency.
RESUMEN
Nanohybrid metal-organic frameworks (MOF) have recently been considered next-generation catalysts regarding their unique features like large surface-to-volume ratio, tailorable geometry, uniform pore sizes, and homogeneous distribution of active sites. In this report, we address the triazine-aminopyridine-modified 3D Cr-centred MOF MIL-101(Cr)-NH2 following a post-synthetic modification approach. The excellent chelating ability of triazine-aminopyridine was applied to immobilize Ni ions over the host matrix MOF. The as-synthesized material was physicochemically characterized using various analytical techniques like FT-IR, electron microscopy, EDS, elemental mapping, XRD, and ICP-OES. Subsequently, the material has been catalytically employed in synthesizing new thiourea derivatives by reacting to nitrobenzene derivatives and phenyl isocyanate. The catalyst was isolated by centrifugation and recycled in 6 consecutive runs without momentous loss of its reactivity.
RESUMEN
The selective oxidation of active and inactive alcohol substrates is a highly versatile conversion that poses a challenge in controlling the functionality and adjustments on MOFs. On the other hand, it offers an attractive opportunity to expand their applications in designing the next generation of catalysts with improved performance. Herein, a novel iron-based MOF containing sulfonamide (MOF-BASU1) has been fabricated by the reaction of 1,3-benzene disulfonylchloride linker and FeCl3·6H2O. Based on the results, the active surface area of the synthesized MOF is large, which highlights its unique catalytic activity. Optimum conditions were reached after 0.5-2 h, with 15 mg loading of the synthesized MOF under optimal conditions. Furthermore, the turnover frequency was 18-77.6 h-1, which is comparable to values previously reported for this process. Overall, the high catalytic activity observed for MOF-BASU1 might be because of the obtained high surface area and the Lewis acidic Fe nodes. Furthermore, the MOF-BASU1 revealed a remarkable chemoselectivity for aldehydes in the presence of aliphatic alcohols. Overall, the high product yields, facile recovery of nanocatalysts, short reaction times, and broad substrate range make this process environmentally friendly, practical, and economically justified.
RESUMEN
As a significant class of synthetic and natural products with multiple biological activities, quinolines are used in medical and electronic devices. In this study, a novel method is presented to synthesize 2,4-diarylquinoline derivatives via a simple one-pot multicomponent reaction between phenylacetylenes, aniline derivatives, and aldehydes in CH3CN using IRMOF-3/PSTA/Cu. Notably, polymer/MOF is stabilized through a reaction between a sulfonamide-triazine-based porous organic polymer [poly (sulfonamide-triazine)](PSTA) and an amino-functionalized zinc metal-organic framework (IRMOF-3). Next, the prepared nanocomposites (IRMOF-3/PSTA) are modified using copper iodide nanoparticles (CuI NPs). Overall, the high product yields, facile recovery of nanocatalysts, short reaction times, and broad substrate range make this process environmentally friendly, practical, and economically justified.
RESUMEN
In this paper, we aim at synthesizing a new nanocomposite material in which bentonite acts as a nucleation site for MgFe2O4 nanoparticles precipitation in the attendance of an external magnetic field (MgFe2O4@Bentonite). Moreover, poly(guanidine-sulfonamide), as a novel kind of polysulfonamide, was immobilized on the surface of the prepared support (MgFe2O4@Bentonite@PGSA). Finally, an efficient and environment-friendly catalyst (containing nontoxic polysulfonamide, copper, and MgFe2O4@Bentonite) was prepared by anchoring a copper ion on the surface of MgFe2O4@Bentonite@PGSAMNPs. The synergic effect of MgFe2O4 magnetic nanoparticles (MNPs), bentonite, PGSA, and copper species was observed while conducting the control reactions. The synthesized Bentonite@MgFe2O4@PGSA/Cu, which was characterized using energy-dispersive X-ray spectroscopy (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy, was applied as a highly efficient heterogeneous catalyst to synthesize 1,4-dihydropyrano[2,3-c] pyrazole yielding up to 98% at 10 minutes. Excessive yield, quick reaction time, using water solvent, turning waste to wealth, and recyclability are the important advantages of the present work.
RESUMEN
A new heterogeneous nanocatalyst LDH@3-chloropyltrimethoxysilane@1,3-benzenedisulfonyl amine@Cu (LDH@TRMS@BDSA@Cu) was synthesized and confirmed by analyzes such as Fourier transform infrared spectroscopy, Field Emission Scanning Electron Microscopy, energy scattered X-ray spectroscopy (EDX), elemental mapping, X-ray diffraction analysis, heat gravity/heat derivatization (TGA) and differential scanning calorimetry. The newly synthesized nanocatalyst effectively catalyzed the reaction between different aryl aldehydes, malononitrile, different acetophenones and ammonium acetate in solvent-free conditions and they were converted into 2-amino-3-cyanopyridine derivatives with high efficiency. The reaction showed advantages such as simplicity, high stability, environmental friendliness, excellent efficiency and short time. Also, this catalyst is recyclable and was recycled 4 times without losing significant catalytic power.
RESUMEN
Mesoporous materials have been the subject of intense research regarding their unique structural and textural properties and successful applications in various fields. This study reports a novel approach for synthesizing a novel porous polymer stabilizer through condensation polymerization in which Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) are used as hard templates. Using this method allowed the facile and fast removal of the template and mesopores formation following the Fe3O4 MNPs. Different techniques were performed to characterize the structure of the polymer. Based on the obtained results, the obtained mesoporous polymeric network was multi-layered and consisted of repeating units of sulfonamide, triazine, and guanidine as a novel heterogeneous multifunctional support. Afterward, the new nickel organometallic complex was supported on its inner surface using the porous poly sulfonamide triazine guanidine (PGTSA/Ni). In this process, the obtained PGTSA/Ni nanocomposite was used as a heterogeneous catalyst in the synthesis of imines from amines. Since this reaction has an acceptorless dehydrogenation pathway, the hydrogen gas is released as its by-product. The synthesized nanocatalyst was structurally confirmed using different characterization modalities, including FT-IR, SEM, XRD, EDX, TEM, elemental mapping, ICP-AES, BET, and TGA. In addition, all products were obtained in high turnover frequency (TOF) and turnover number (TON). The corresponding results revealed the high selectivity and activity of the prepared catalyst through these coupling reactions. Overall, the synthesized nanocatalyst is useable for eight cycles with no considerable catalytic efficiency loss.
RESUMEN
The synthesis of six-membered oxygen- and nitrogen-containing heterocycles has been regarded as the most fundamental issue in organic chemistry and the chemical industry because these heterocycles are used in producing high-value products. In this study, an efficient, economic, sustainable, and green protocol for their multicomponent synthesis has been developed. The one-pot direct Knoevenagel condensation-Michael addition-cyclization sequences for the transformation of aromatic aldehydes, malononitrile, and 2-aminopyridine generate the corresponding 1,8-naphthyridines over a novel mesoporous bifunctional organocatalyst supported cholorosulfonic acid [poly(triazine-benzene sulfonamide)-SO3H (PTBSA-SO3H)] under ambient conditions. The catalyst was used for the formation of 1,8-naphthyridine derivatives for six runs. The current strategy provided a wider substrate range, and short reaction times.
RESUMEN
Click synthesis is a class of biocompatible small molecule reactions commonly used in bioconjugation. This research presents a recyclable environmentally-friendly catalyst for 1,2,3-triazoles. To this end, we immobilized poly sulfonamide-thiazole (PST), a new group of sulfonamides, on the surface of layered double hydroxides/chitosan (LDH@CS). Afterward, it was decorated using copper iodide nanoparticles (CuI NPs). LDH@CS@PST/Cu was characterized various techniques, including HNMR, 13CNMR, FE-SEM, FT-IR, XRD, EDX, ICP-OES, and TGA/DTA. Overall, the results revealed that LDH@CS@PST/Cu is a promising green efficient for the domino reaction of phenacyl bromides with phenylacetylene and sodium azide.
Asunto(s)
Quitosano , Nanocompuestos , Nanopartículas , Quitosano/química , Cobre/química , Hidróxidos/química , Yoduros , Nanocompuestos/química , Nanopartículas/química , Espectroscopía Infrarroja por Transformada de Fourier , Sulfanilamida , Tiazoles , Triazoles/químicaRESUMEN
A new type of polymer-layered double hydroxide nanocomposite bearing thiazole moieties was used to support CuI nanoparticles (NPs) as a heterogeneous catalyst for the synthesis of bis-N-arylsulfonamides. The prepared nanostructured catalyst (LDH@MPS-GMA-TZ-CuI) showed high catalytic activity, as well as excellent recyclability for the preparation of bis-N-arylsulfonamides via the chemoselective reaction of 1,3-disulfonyl chloride and nitroarenes. The superior catalytic activity of the LDH@MPS-GMA-TZ-CuI is related to the high loading of CuI NPs and favorable surface properties.
RESUMEN
Herein, we report the synthesis of nickel nanoparticles under mild conditions using porous alginate-g-poly(p-styrene sulfonamide-co-acrylamide) as a protecting/stabilizing agent and sodium borohydride as a reducing agent. The porous cross-linked polymeric support was prepared via combining the use of sol-gel, nanocasting, and crosslinking techniques, in which the p-styrene sulfonamide monomer (PSSA) and N,N'-methylene-bis (acrylamide) (MBA) cross-linker underwent copolymerization on the surface of sodium alginate in the presence of a SiO2 nanoparticle (NP) template (Alg-PSSA-co-ACA). The prepared catalyst (Alg-PSSA-co-ACA@Ni) showed high catalytic activity for the one-step synthesis of 1,3,4-oxadiazoles from the reaction of hydrazides and aryl iodides through isocyanide insertion/cyclization.
RESUMEN
The purpose of this work is to develop a magnetically recyclable immobilized base catalyst for the green synthesis of calixresorcarenes. To achieve this, poly triazine-benzene sulfonamide (PTBSA) has been coated on magnetic Fe3O4 nanoparticles and subsequently chlorosulfonic acid has been supported to obtain Fe3O4@PTBSA-SO3H. The structure of nano-Fe3O4@PTBSA-SO3H was characterized by TEM, XRD, FT-IR, VSM, WDX, EDX, TGA/DSC and FE-SEM. The catalytic efficiency of this catalyst was also investigated in the synthesis of novel calixresorcarene derivatives. The advantages of heterogeneous nature, catalytic activity and the recyclability of the polymer support were also strengthened by advanced surface treatment. These key factors (basic sites, acidic sites and heterogeneity) play essential roles in the catalyst performance. This procedure has some advantages such as short reaction time, clean and fast work-up and easy separation of the catalyst by an external magnet.
RESUMEN
The LDHs@Propyl-ANDSA was used as a new catalyst for synthesizing 7H-indeno[2,1-c]quinoline derivatives. The catalyst was integrated according to three-step synthesis. Zn-Cr layered double hydroxides (LDHs) were synthesized with molar ratio 2:1 by the co-precipitation method.