Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 807: 137262, 2023 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-37116576

RESUMEN

Cerebellar dysfunction is implicated in impaired motor coordination and balance, thus disturbing the dynamics of sensorimotor integration. Neuroinflammation and aging could be prominent contributors to cerebellar aberration. Additionally, changes in mitochondrial dynamics may precede microglia activation in several chronic neurodegenerative diseases; however, the underlying mechanism remains largely unknown. Here using LPS (1 mg/kg i.p. for four consecutive days) stimulation in both young (3 months old) and aged (12 months old) mice, followed by molecular analysis on the 21st day, we have explored the correlation between aging and mitochondrial dynamic alteration in the backdrop of chronic neuroinflammation. Following LPS stimulation, we observed microglia activation and subsequent elevation in proinflammatory cytokines (M1; TNF-α, IFN-γ) with NLRP3 activation and a concomitant reduction in the expression of anti-inflammatory markers (M2; YM1, TGF-ß1) in the cerebellar tissue of aged mice compared with the young LPS and aged controls. Remarkably, senescence (p21, p27, p53) and epigenetic (HDAC2) markers were found upregulated in the cerebellum tissue of the aged LPS group, suggesting their crucial role in LPS-induced cerebellar deficit. Further, we demonstrated alteration in the antagonistic forces of mitochondrial fusion and fission with increased expression of the mitochondrial fission-related gene [FIS1] and decreased fusion-related genes [MFN1 and MFN2]. We noted increased mtDNA copy number, microglia activation, and inflammatory response of IL1-ß and IFN-γ post-chronic neuroinflammation in aged LPS group. Our results suggest that the crosstalk between mitochondrial dynamics and altered microglial activation paradigm in chronic neuroinflammatory conditions may be the key to understanding the cerebellar molecular mechanism.


Asunto(s)
Enfermedades Cerebelosas , Dinámicas Mitocondriales , Ratones , Animales , Microglía/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Enfermedades Neuroinflamatorias , Citocinas/metabolismo
2.
Immunol Res ; 70(5): 633-643, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35670903

RESUMEN

Cognitive dysfunction, sickness-like behavior, for instance, anxiety, and depression are common aspects of neuropsychiatry often associated with neurodegenerative disorders. Growing evidence suggests that high mobility group box 1 (HMGB1) may act as a proinflammatory cytokine that aggravates neurobehavioral dysfunction. However, the detailed underlying mechanism is still elusive. Here we focus on determining the relationship between lipopolysaccharide (LPS)-induced neuroinflammation (in both in vitro and in vivo models), cognitive dysfunction, sickness-like behavior and thus decode the impact of HMGB1 inhibition (using Glycyrrhizin; Gcy as an antagonist). Using a mice model of repeated LPS (1 mg/kg, i.p. for 4 days) injections, we found that LPS induced neurobehavioral deficit and a strong proinflammatory response with increased proinflammatory markers, including tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and iNOS (inducible nitric oxide synthase) at 7 days after the final dose of LPS compared to control animals. Our findings suggest that neurobehavioral dysfunction strongly correlates with the proinflammatory immune response following LPS stimulation. In vitro Gcy pretreatment to LPS-activated BV2 microglia cells significantly reduced nitrite and reactive oxygen species production, along with diminished expression of classical proinflammatory cytokines (TNF-α, IL-1ß, IL-6, iNOS). These key proinflammatory changes with LPS and Gcy treatment are also found in vivo mice model and correlate with improved cognitive function and reduced anxiety/depression. Together, these results show that blocking HMGB1 using Gcy abrogated the cognitive dysfunction, sickness-like behavior of anxiety and depression induced by LPS which can be a promising avenue for crucial neurobehavioral dysfunction.


Asunto(s)
Disfunción Cognitiva , Proteína HMGB1 , Animales , Disfunción Cognitiva/tratamiento farmacológico , Citocinas/metabolismo , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Proteína HMGB1/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Biomed Mater Res B Appl Biomater ; 108(8): 3147-3154, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32495470

RESUMEN

Tissue engineering is one of the potential fields in the domain of regenerative medicine. Engineered scaffolds are an excellent substitute for the conventional use of bone grafts as they are biocompatible, economic, and provide limitless supply with no risk of disease transmission. Gum-based scaffolds present a good scope for studying tissue-engineering models and analyzing controlled drug delivery. Uniform blending of the gums and the presence of the optimal concentration of appropriate crosslinkers are very crucial for biodegradability nature. Gum-based scaffolds containing gellan gum, xanthan gum, polyvinyl alcohol, and hydroxyapatite, cross-linked with either glutaraldehyde (GA) or sodium trimetaphosphate (STMP) were fabricated to study the efficiency of crosslinkers and were characterized for degradation profile, swelling capacity, porosity, mechanical strength, morphology, X-ray diffraction, Fourier-transform infrared, and in vitro biocompatibility. Scaffolds crosslinked with STMP exhibited higher degradation rate at Day 21 than scaffolds crosslinked with GA. However, higher compressive strength was obtained for scaffolds cross-linked with STMP signifying that they have a better ability to resist compressive forces. Superior cell viability was observed in STMP-crosslinked scaffolds. In conclusion, STMP serves as a better crosslinker in comparison to GA and can be used in the fabrication of scaffolds for bone tissue engineering.


Asunto(s)
Reactivos de Enlaces Cruzados , Glutaral/química , Polifosfatos/química , Andamios del Tejido/química , Implantes Absorbibles , Sustitutos de Huesos , Supervivencia Celular , Células Cultivadas , Humanos , Ensayo de Materiales , Polisacáridos Bacterianos , Porosidad , Resistencia a la Tracción , Ingeniería de Tejidos , Difracción de Rayos X
4.
Nat Commun ; 11(1): 137, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919425

RESUMEN

Public archives of next-generation sequencing data are growing exponentially, but the difficulty of marshaling this data has led to its underutilization by scientists. Here, we present ASCOT, a resource that uses annotation-free methods to rapidly analyze and visualize splice variants across tens of thousands of bulk and single-cell data sets in the public archive. To demonstrate the utility of ASCOT, we identify novel cell type-specific alternative exons across the nervous system and leverage ENCODE and GTEx data sets to study the unique splicing of photoreceptors. We find that PTBP1 knockdown and MSI1 and PCBP2 overexpression are sufficient to activate many photoreceptor-specific exons in HepG2 liver cancer cells. This work demonstrates how large-scale analysis of public RNA-Seq data sets can yield key insights into cell type-specific control of RNA splicing and underscores the importance of considering both annotated and unannotated splicing events.


Asunto(s)
Empalme Alternativo/genética , Biología Computacional/métodos , Análisis de Datos , Células Fotorreceptoras/citología , Sitios de Empalme de ARN/genética , Animales , Línea Celular Tumoral , Expresión Génica/genética , Células Hep G2 , Ribonucleoproteínas Nucleares Heterogéneas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Hepáticas/genética , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Proteína de Unión al Tracto de Polipirimidina/genética , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Retina/citología , Análisis de Secuencia de ARN/métodos
5.
Nat Commun ; 10(1): 1997, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040288

RESUMEN

Human G protein-coupled receptors (GPCRs) respond to various ligands and stimuli. However, GPCRs rely on membrane for proper folding, making their biochemical properties difficult to study. By displaying GPCRs in viral envelopes, we fabricated a Virion Display (VirD) array containing 315 non-olfactory human GPCRs for functional characterization. Using this array, we found that 10 of 20 anti-GPCR mAbs were ultra-specific. We further demonstrated that those failed in the mAb assays could recognize their canonical ligands, suggesting proper folding. Next, using two peptide ligands on the VirD-GPCR array, we identified expected interactions and novel interactions. Finally, we screened the array with group B Streptococcus, a major cause of neonatal meningitis, and demonstrated that inhibition of a newly identified target, CysLTR1, reduced bacterial penetration both in vitro and in vivo. We believe that the VirD-GPCR array holds great potential for high-throughput screening for small molecule drugs, affinity reagents, and ligand deorphanization.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Virión/metabolismo , Animales , Western Blotting , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células HeLa , Humanos , Proteómica/métodos , Streptococcus/metabolismo , Células Vero , Virología/métodos
6.
Nat Methods ; 15(5): 330-338, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29638227

RESUMEN

A key component of efforts to address the reproducibility crisis in biomedical research is the development of rigorously validated and renewable protein-affinity reagents. As part of the US National Institutes of Health (NIH) Protein Capture Reagents Program (PCRP), we have generated a collection of 1,406 highly validated immunoprecipitation- and/or immunoblotting-grade mouse monoclonal antibodies (mAbs) to 737 human transcription factors, using an integrated production and validation pipeline. We used HuProt human protein microarrays as a primary validation tool to identify mAbs with high specificity for their cognate targets. We further validated PCRP mAbs by means of multiple experimental applications, including immunoprecipitation, immunoblotting, chromatin immunoprecipitation followed by sequencing (ChIP-seq), and immunohistochemistry. We also conducted a meta-analysis that identified critical variables that contribute to the generation of high-quality mAbs. All validation data, protocols, and links to PCRP mAb suppliers are available at http://proteincapture.org.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Análisis por Matrices de Proteínas/métodos , Factores de Transcripción/metabolismo , Animales , Clonación Molecular , Bases de Datos Factuales , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Reproducibilidad de los Resultados
7.
Proc Natl Acad Sci U S A ; 110(6): E448-57, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341616

RESUMEN

HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN Viral/metabolismo , VIH-1/fisiología , Integración Viral/fisiología , Fármacos Anti-VIH/farmacología , Secuencia de Bases , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/genética , ADN Viral/química , ADN Viral/genética , Nucleótidos de Desoxiuracil/metabolismo , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , VIH-1/genética , VIH-1/patogenicidad , Células HT29 , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/fisiología , Humanos , Inmunidad Innata , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Modelos Biológicos , Mutación , Quinazolinas/farmacología , Transcripción Reversa , Tiofenos/farmacología , Timidina/metabolismo , Timidina/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Virión
8.
J Biomark ; 2013: 538765, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26317018

RESUMEN

Amyotrophic lateral sclerosis (ALS) is one of the most common motor neurodegenerative disorders, primarily affecting upper and lower motor neurons in the brain, brainstem, and spinal cord, resulting in paralysis due to muscle weakness and atrophy. The majority of patients die within 3-5 years of symptom onset as a consequence of respiratory failure. Due to relatively fast progression of the disease, early diagnosis is essential. Metabolomics offer a unique opportunity to understand the spatiotemporal metabolic crosstalks through the assessment of body fluids and tissue. So far, one of the most challenging issues related to ALS is to understand the variation of metabolites in body fluids and CNS with the progression of disease. In this paper we will review the changes in metabolic profile in response to disease progression condition and also see the therapeutic implication of various drugs in ALS patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...