Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
EBioMedicine ; 104: 105136, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723554

RESUMEN

BACKGROUND: Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5+-DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 is an RNA sensor and a key pattern recognition receptor for the SARS-CoV-2 virus. METHODS: This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018 and December 2022 in Yorkshire, UK. MDA5-positivity was correlated with clinical features and outcome, and regional SARS-CoV-2 positivity and vaccination rates. Gene expression patterns in COVID-19 were compared with autoimmune lung disease and idiopathic pulmonary fibrosis (IPF) to gain clues into the genesis of the observed MDA5+-DM outbreak. FINDINGS: Sixty new anti-MDA5+, but not other MSAs surged between 2020 and 2022, increasing from 0.4% in 2019 to 2.1% (2020), 4.8% (2021) and 1.7% (2022). Few (8/60) had a prior history of confirmed COVID-19, peak rates overlapped with regional SARS-COV-2 community positivity rates in 2021, and 58% (35/60) had received anti-SARS-CoV-2 vaccines. 25/60 cases developed ILD which rapidly progression with death in 8 cases. Among the 35/60 non-ILD cases, 14 had myositis, 17 Raynaud phenomena and 10 had dermatomyositis spectrum rashes. Transcriptomic studies showed strong IFIH1 (gene encoding for MDA5) induction in COVID-19 and autoimmune-ILD, but not IPF, and IFIH1 strongly correlated with an IL-15-centric type-1 interferon response and an activated CD8+ T cell signature that is an immunologic hallmark of progressive ILD in the setting of systemic autoimmune rheumatic diseases. The IFIH1 rs1990760TT variant blunted such response. INTERPRETATION: A distinct pattern of MDA5-autoimmunity cases surged contemporaneously with circulation of the SARS-COV-2 virus during COVID-19. Bioinformatic insights suggest a shared immunopathology with known autoimmune lung disease mechanisms. FUNDING: This work was supported in part by the National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), and in part by the National Institutes of Health (NIH) grant R01-AI155696 and pilot awards from the UC Office of the President (UCOP)-RGPO (R00RG2628, R00RG2642 and R01RG3780) to P.G. S.S was supported in part by R01-AI141630 (to P.G) and in part through funds from the American Association of Immunologists (AAI) Intersect Fellowship Program for Computational Scientists and Immunologists.

2.
Trends Cancer ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693003

RESUMEN

Despite an overall decrease in occurrence, colorectal cancer (CRC) remains the third most common cause of cancer deaths in the USA. Detection of CRC is difficult in high-risk groups, including those with genetic predispositions, with disease traits, or from certain demographics. There is emerging interest in using engineered bacteria to identify early CRC development, monitor changes in the adenoma and CRC microenvironment, and prevent cancer progression. Novel genetic circuits for cancer therapeutics or functions to enhance existing treatment modalities have been tested and verified in vitro and in vivo. Inclusion of biocontainment measures would prepare strains to meet therapeutic standards. Thus, engineered bacteria present an opportunity for detection and treatment of CRC lesions in a highly sensitive and specific manner.

3.
Trends Biochem Sci ; 49(4): 286-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341333

RESUMEN

Eukaryotic cells learn and adapt via unknown network architectures. Recent work demonstrated a circuit of two GTPases used by cells to overcome growth factor scarcity, encouraging our view that artificial and biological intelligence share strikingly similar design principles and that cells function as deep reinforcement learning (RL) agents in uncertain environments.


Asunto(s)
GTP Fosfohidrolasas , Transducción de Señal , GTP Fosfohidrolasas/metabolismo
4.
PNAS Nexus ; 3(2): pgae014, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38312224

RESUMEN

Self-sufficiency (autonomy) in growth signaling, the earliest recognized hallmark of cancer, is fueled by the tumor cell's ability to "secrete-and-sense" growth factors (GFs); this translates into cell survival and proliferation that is self-sustained by autocrine/paracrine secretion. A Golgi-localized circuitry comprised of two GTPase switches has recently been implicated in the orchestration of growth signaling autonomy. Using breast cancer cells that are either endowed or impaired (by gene editing) in their ability to assemble the circuitry for growth signaling autonomy, here we define the transcriptome, proteome, and phenome of such an autonomous state, and unravel its role during cancer progression. We show that autonomy is associated with enhanced molecular programs for stemness, proliferation, and epithelial-mesenchymal plasticity. Autonomy is both necessary and sufficient for anchorage-independent GF-restricted proliferation and resistance to anticancer drugs and is required for metastatic progression. Transcriptomic and proteomic studies show that autonomy is associated, with a surprising degree of specificity, with self-sustained epidermal growth factor receptor (EGFR)/ErbB signaling. Derivation of a gene expression signature for autonomy revealed that growth signaling autonomy is uniquely induced in circulating tumor cells (CTCs), the harshest phase in the life of tumor cells when it is deprived of biologically available epidermal growth factor (EGF). We also show that autonomy in CTCs tracks therapeutic response and prognosticates outcome. These data support a role for growth signaling autonomy in multiple processes essential for the blood-borne dissemination of human breast cancer.

5.
bioRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745574

RESUMEN

BACKGROUND: Although differentiation therapy can cure some hematologic malignancies, its curative potential remains unrealized in solid tumors. This is because conventional computational approaches succumb to the thunderous noise of inter-/intratumoral heterogeneity. Using colorectal cancers (CRCs) as an example, here we outline a machine learning(ML)-based approach to track, differentiate, and selectively target cancer stem cells (CSCs). METHODS: A transcriptomic network was built and validated using healthy colon and CRC tissues in diverse gene expression datasets (~5,000 human and >300 mouse samples). Therapeutic targets and perturbation strategies were prioritized using ML, with the goal of reinstating the expression of a transcriptional identifier of the differentiated colonocyte, CDX2, whose loss in poorly differentiated (CSC-enriched) CRCs doubles the risk of relapse/death. The top candidate target was then engaged with a clinical-grade drug and tested on 3 models: CRC lines in vitro, xenografts in mice, and in a prospective cohort of healthy (n = 3) and CRC (n = 23) patient-derived organoids (PDOs). RESULTS: The drug shifts the network predictably, induces CDX2 and crypt differentiation, and shows cytotoxicity in all 3 models, with a high degree of selectivity towards all CDX2-negative cell lines, xenotransplants, and PDOs. The potential for effective pairing of therapeutic efficacy (IC50) and biomarker (CDX2-low state) is confirmed in PDOs using multivariate analyses. A 50-gene signature of therapeutic response is derived and tested on 9 independent cohorts (~1700 CRCs), revealing the impact of CDX2-reinstatement therapy could translate into a ~50% reduction in the risk of mortality/recurrence. CONCLUSIONS: Findings not only validate the precision of the ML approach in targeting CSCs, and objectively assess its impact on clinical outcome, but also exemplify the use of ML in yielding clinical directive information for enhancing personalized medicine.

6.
J Surg Res ; 293: 701-708, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37839102

RESUMEN

INTRODUCTION: Gastric cancer poses a major therapeutic challenge. Improved visualization of tumor margins at the time of gastrectomy with fluorescent tumor-specific antibodies could improve outcomes. The present report demonstrates the potential of targeting gastric cancer with a humanized anti-carcinoembryonic antigen (CEA) antibody in orthotopic mouse models. METHODS: MKN45 cells were injected subcutaneously into nude mice to establish xenograft models. Tumor fragments collected from subcutaneous models were then implanted into the greater curvature of the stomach to establish orthotopic models. For tumor labeling, a humanized anti-CEA antibody (M5A) and IgG as a control, were conjugated with the near-infrared dye IRDye800CW. Time (24-72 h) and dose (50-100 µg) response curves were performed in subcutaneous models. Orthotopic models received 50 µg of M5A-IR800 or 50 µg IgG-IR800 as a control and were imaged after 72 h. Fluorescence imaging was performed on the mice using the LI-COR Pearl Imaging System. RESULTS: In subcutaneous models, tumor to background ratios (TBRs) reached 8.85 at 72 h. Median TBRs of orthotopic model primary tumors were 6.25 (interquartile range [IQR] 6.03-7.12) for M5A-IR800 compared to 0.42 (IQR 0.38-0.54) for control. Abdominal wall metastasis median TBRs were 13.52 (IQR 12.79-13.76) for M5A-IR800 and 3.19 (IQR 2.65-3.73) for the control. Immunohistochemistry confirmed CEA expression within tumors. CONCLUSIONS: Humanized anti-CEA antibodies conjugated to near-infrared dyes provide specific labeling of gastric cancers in mouse models. Orthotopic models demonstrated bright and specific labeling with TBRs greater than ten times that of control. This tumor-specific fluorescent antibody is a promising potential clinical tool for improving visualization of gastric cancer margins at time of surgical resection.


Asunto(s)
Neoplasias Gástricas , Humanos , Animales , Ratones , Ratones Desnudos , Antígeno Carcinoembrionario , Anticuerpos Monoclonales , Modelos Animales de Enfermedad , Inmunoglobulina G , Colorantes Fluorescentes , Línea Celular Tumoral
7.
Nat Commun ; 14(1): 8169, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071370

RESUMEN

SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5'-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.


Asunto(s)
COVID-19 , ADN Glicosilasas , Cricetinae , Animales , Humanos , COVID-19/genética , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Genoma , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo
8.
medRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961408

RESUMEN

Background: Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5 + -DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 senses single-stranded RNA and is a key pattern recognition receptor for the SARS-CoV-2 virus. Methods: This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018-December 2022 in Yorkshire, UK. MDA5-positivity was correlated with clinical features and outcome, and regional SARS-CoV-2 positivity and vaccination rates. Gene expression patterns in COVID-19 were compared with autoimmune lung disease and idiopathic pulmonary fibrosis (IPF) to gain clues into the genesis of the observed MDA5 + -DM outbreak. Results: Sixty new anti-MDA5+, but not other MSAs surged between 2020-2022, increasing from 0.4% in 2019 to 2.1% (2020), 4.8% (2021) and 1.7% (2022). Few (8/60) had a prior history of confirmed COVID-19, peak rates overlapped with regional SARS-COV-2 community positivity rates in 2021, and 58% (35/60) had received anti-SARS-CoV-2 RNA vaccines. Few (8/60) had a prior history of COVID-19, whereas 58% (35/60) had received anti-SARS-CoV-2 RNA vaccines. 25/60 cases developed ILD which rapidly progression with death in 8 cases. Among the 35/60 non-ILD cases, 14 had myositis, 17 Raynaud phenomena and 10 had dermatomyositis spectrum rashes. Transcriptomic studies showed strong IFIH1 (gene encoding for MDA5) induction in COVID-19 and autoimmune-ILD, but not IPF, and IFIH1 strongly correlated with an IL-15-centric type-1 interferon response and an activated CD8+ T cell signature that is an immunologic hallmark of progressive ILD in the setting of systemic autoimmune rheumatic diseases. The IFIH1 rs1990760TT variant blunted such response. Conclusions: A distinct pattern of MDA5-autoimmunity cases surged contemporaneously with circulation of the SARS-COV-2 virus during COVID-19. Bioinformatic insights suggest a shared immunopathology with known autoimmune lung disease mechanisms.

9.
Trends Immunol ; 44(12): 954-964, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37945504

RESUMEN

Single-cell approaches have shone a spotlight on discrete context-specific tissue macrophage states, deconstructed to their most minute details. Machine-learning (ML) approaches have recently challenged that dogma by revealing a context-agnostic continuum of states shared across tissues. Both approaches agree that 'brake' and 'accelerator' macrophage subpopulations must be balanced to achieve homeostasis. Both approaches also highlight the importance of ensemble fluidity as subpopulations switch between wide ranges of accelerator and brake phenotypes to mount the most optimal wholistic response to any threat. A full comprehension of the rules that govern these brake and accelerator states is a promising avenue because it can help formulate precise macrophage re-education therapeutic strategies that might selectively boost or suppress disease-associated states and phenotypes across various tissues.


Asunto(s)
Macrófagos , Humanos
10.
J Biol Chem ; 299(12): 105390, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890785

RESUMEN

Macrophages clear infections by engulfing and digesting pathogens within phagolysosomes. Pathogens escape this fate by engaging in a molecular arms race; they use WxxxE motif-containing "effector" proteins to subvert the host cells they invade and seek refuge within protective vacuoles. Here, we define the host component of the molecular arms race as an evolutionarily conserved polar "hot spot" on the PH domain of ELMO1 (Engulfment and Cell Motility protein 1), which is targeted by diverse WxxxE effectors. Using homology modeling and site-directed mutagenesis, we show that a lysine triad within the "patch" directly binds all WxxxE effectors tested: SifA (Salmonella), IpgB1 and IpgB2 (Shigella), and Map (enteropathogenic Escherichia coli). Using an integrated SifA-host protein-protein interaction network, in silico network perturbation, and functional studies, we show that the major consequences of preventing SifA-ELMO1 interaction are reduced Rac1 activity and microbial invasion. That multiple effectors of diverse structure, function, and sequence bind the same hot spot on ELMO1 suggests that the WxxxE effector(s)-ELMO1 interface is a convergence point of intrusion detection and/or host vulnerability. We conclude that the interface may represent the fault line in coevolved molecular adaptations between pathogens and the host, and its disruption may serve as a therapeutic strategy.


Asunto(s)
Proteínas Bacterianas , Enterobacteriaceae , Macrófagos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Salmonella/metabolismo , Humanos , Animales , Interacciones Huésped-Patógeno , Enterobacteriaceae/clasificación , Enterobacteriaceae/fisiología , Infecciones por Enterobacteriaceae/microbiología , Macrófagos/microbiología
11.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37666668

RESUMEN

PRMT5 is a type II arginine methyltransferase abundantly expressed in the colonic epithelium. It is up-regulated in inflammatory bowel disease and colorectal cancer. However, its role in mucosal defense against enteric infection has not been studied. Here, we report that Prmt5 in the murine colon is up-regulated in response to Citrobacter rodentium infection. Pathogen clearance in mice with haploinsufficient expression of Prmt5 is significantly delayed compared with wildtype littermate controls. Transcriptomic analyses further reveal that PRMT5 regulates the expression of canonical crypt goblet cell genes involved in mucus production, assembly, and anti-microbial responses via methyltransferase activity-dependent and -independent mechanisms. Together, these findings uncover PRMT5 as a novel regulator of mucosal defense and a potential therapeutic target for treating intestinal diseases.


Asunto(s)
Infecciones por Enterobacteriaceae , Intestinos , Animales , Ratones , Péptidos y Proteínas de Señalización Intracelular , Proteína-Arginina N-Metiltransferasas/genética , Colon , Infecciones por Enterobacteriaceae/genética
12.
Cancers (Basel) ; 15(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627080

RESUMEN

The role of heat shock protein 60 (HSP60), a mitochondrial chaperone, in tumor progression or its anti-tumor effects remains controversial. This study aimed to confirm the possibility of using HSP60 as a prognostic marker in patients with colorectal cancer (CRC), considering TNM classification for precise prediction. HSP60 expression increased with differentiation and p53 mutations in patients. However, compared to patients with high HSP60 expression, patients with low HSP60 expression had event-free survival and disease-specific survival hazard ratios (HRs) of 1.42 and 1.69, respectively. Moreover, when the survival rate was analyzed by combining TNM classification and HSP60 expression, the prognosis was poor, particularly when HSP60 expression was low in the late/advanced stage. This pattern was also observed with HSP family D member 1, HSPD1, the gene that encodes HSP60. Low HSPD1 expression was linked to lower overall survival and relapse-free survival rates, with HRs of 1.80 and 1.87, respectively. When TNM classification and HSPD1 expression were considered, CRC patients with low HSPD1 expression and advanced malignancy had a poorer prognosis than those with high HSPD1 expression. Thus, HSPD1/HSP60 can be a useful biomarker for a sophisticated survival prediction in late- and advanced-stage CRC, allowing the design of individualized treatment strategies.

13.
J Med Chem ; 66(17): 12396-12406, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37587416

RESUMEN

Noncanonical G protein activation and inactivation, particularly for the Gαi/s protein subfamilies, have long been a focus of chemical research. Combinatorial libraries were already effectively applied to identify modulators of the guanine-nucleotide exchange, as can be exemplified with peptides such as KB-752 and GPM-1c/d, the so-called guanine-nucleotide exchange modulators. In this study, we identified novel bicyclic peptides from a combinatorial library screening that show prominent properties as molecular switch-on/off modulators of Gαi signaling. Among the series of hits, the exceptional paradigm of GPM-3, a protein and state-specific bicyclic peptide, is the first chemically identified GAP (GTPase-activating protein) modulator with a high binding affinity for Gαi protein. Computational analyses identified and assessed the structure of the bicyclic peptides, novel ligand-protein interaction sites, and their subsequent impact on the nucleotide binding site. This approach can therefore lead the way for the development of efficient chemical biological probes targeting Gαi protein modulation within a cellular context.


Asunto(s)
Nucleótidos de Guanina , Biblioteca de Péptidos , Sitios de Unión , Nucleótidos , Guanina
14.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581931

RESUMEN

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family of receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, ErbB2, and ErbB4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, proinflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production, and disruption of blood-brain barrier integrity in microfluidics-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof of principle for a repurposed, ErbB-targeted approach to combat emerging viruses.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Animales , Humanos , Ratones , Antivirales/farmacología , Citocinas , Inflamación/tratamiento farmacológico , Lapatinib/farmacología , SARS-CoV-2
15.
EBioMedicine ; 94: 104719, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37516087

RESUMEN

BACKGROUND: Single-cell transcriptomic studies have greatly improved organ-specific insights into macrophage polarization states are essential for the initiation and resolution of inflammation in all tissues; however, such insights are yet to translate into therapies that can predictably alter macrophage fate. METHOD: Using machine learning algorithms on human macrophages, here we reveal the continuum of polarization states that is shared across diverse contexts. A path, comprised of 338 genes accurately identified both physiologic and pathologic spectra of "reactivity" and "tolerance", and remained relevant across tissues, organs, species, and immune cells (>12,500 diverse datasets). FINDINGS: This 338-gene signature identified macrophage polarization states at single-cell resolution, in physiology and across diverse human diseases, and in murine pre-clinical disease models. The signature consistently outperformed conventional signatures in the degree of transcriptome-proteome overlap, and in detecting disease states; it also prognosticated outcomes across diverse acute and chronic diseases, e.g., sepsis, liver fibrosis, aging, and cancers. Crowd-sourced genetic and pharmacologic studies confirmed that model-rationalized interventions trigger predictable macrophage fates. INTERPRETATION: These findings provide a formal and universally relevant definition of macrophage states and a predictive framework (http://hegemon.ucsd.edu/SMaRT) for the scientific community to develop macrophage-targeted precision diagnostics and therapeutics. FUNDING: This work was supported by the National Institutes for Health (NIH) grant R01-AI155696 (to P.G, D.S and S.D). Other sources of support include: R01-GM138385 (to D.S), R01-AI141630 (to P.G), R01-DK107585 (to S.D), and UG3TR003355 (to D.S, S.D, and P.G). D.S was also supported by two Padres Pedal the Cause awards (Padres Pedal the Cause/RADY #PTC2017 and San Diego NCI Cancer Centers Council (C3) #PTC2017). S.S, G.D.K, and D.D were supported through The American Association of Immunologists (AAI) Intersect Fellowship Program for Computational Scientists and Immunologists. We also acknowledge support from the Padres Pedal the Cause #PTC2021 and the Torey Coast Foundation, La Jolla (P.G and D.S). D.S, P.G, and S.D were also supported by the Leona M. and Harry B. Helmsley Charitable Trust.


Asunto(s)
Macrófagos , Médicos , Humanos , Estados Unidos , Animales , Ratones , Inflamación
16.
Curr Issues Mol Biol ; 45(4): 3347-3358, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37185743

RESUMEN

Poor visualization of polyps can limit colorectal cancer screening. Fluorescent antibodies to mucin5AC (MUC5AC), a glycoprotein upregulated in adenomas and colorectal cancer, could improve screening colonoscopy polyp detection rate. Adenomatous polyposis coli flox mice with a Cdx2-Cre transgene (CPC-APC) develop colonic polyps that contain both dysplastic and malignant tissue. Mice received MUC5AC-IR800 or IRdye800 as a control IV and were sacrificed after 48 h for near-infrared imaging of their colons. A polyp-to-background ratio (PBR) was calculated for each polyp by dividing the mean fluorescence intensity of the polyp by the mean fluorescence intensity of the background tissue. The mean 25 µg PBR was 1.70 (±0.56); the mean 50 µg PBR was 2.64 (±0.97); the mean 100 µg PBR was 3.32 (±1.33); and the mean 150 µg PBR was 3.38 (±0.87). The mean PBR of the dye-only control was 2.22 (±1.02), significantly less than the 150 µg arm (p-value 0.008). The present study demonstrates the ability of fluorescent anti-MUC5AC antibodies to specifically target and label colonic polyps containing high-grade dysplasia and intramucosal adenocarcinoma in CPC-APC mice. This technology can potentially improve the detection rate and decrease the miss rate of advanced colonic neoplasia and early cancer at colonoscopy.

17.
bioRxiv ; 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37066267

RESUMEN

Macrophages clear infections by engulfing and digesting pathogens within phagolysosomes. Pathogens escape this fate by engaging in a molecular arms race; they use WxxxE motif-containing effector proteins to subvert the host cells they invade and seek refuge within protective vacuoles. Here we define the host component of the molecular arms race as an evolutionarily conserved polar hotspot on the PH-domain of ELMO1 (Engulfment and Cell Motility1), which is targeted by diverse WxxxE-effectors. Using homology modeling and site-directed mutagenesis, we show that a lysine triad within the patch directly binds all WxxxE-effectors tested: SifA (Salmonella), IpgB1 and IpgB2 (Shigella), and Map (enteropathogenic E. coli). Using an integrated SifA-host protein-protein interaction (PPI) network, in-silico network perturbation, and functional studies we show that the major consequences of preventing SifA-ELMO1 interaction are reduced Rac1 activity and microbial invasion. That multiple effectors of diverse structure, function, and sequence bind the same hotpot on ELMO1 suggests that the WxxxE-effector(s)-ELMO1 interface is a convergence point of intrusion detection and/or host vulnerability. We conclude that the interface may represent the fault line in co-evolved molecular adaptations between pathogens and the host and its disruption may serve as a therapeutic strategy.

18.
Mol Syst Biol ; 19(4): e11127, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36856068

RESUMEN

Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαßγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.


Asunto(s)
Células Eucariotas , Proteómica , Transducción de Señal , GTP Fosfohidrolasas
19.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993616

RESUMEN

Estrogen receptor-positive (ER+) breast cancer commonly disseminates to bone marrow, where interactions with mesenchymal stromal cells (MSCs) shape disease trajectory. We modeled these interactions with tumor-MSC co-cultures and used an integrated transcriptome-proteome-network- analyses workflow to identify a comprehensive catalog of contact-induced changes. Induced genes and proteins in cancer cells, some borrowed and others tumor-intrinsic, were not recapitulated merely by conditioned media from MSCs. Protein-protein interaction networks revealed the rich connectome between 'borrowed' and 'intrinsic' components. Bioinformatic approaches prioritized one of the 'borrowed' components, CCDC88A /GIV, a multi-modular metastasis-related protein which has recently been implicated in driving one of the hallmarks of cancers, i.e., growth signaling autonomy. MSCs transferred GIV protein to ER+ breast cancer cells (that lack GIV) through tunnelling nanotubes via connexin (Cx)43-facilitated intercellular transport. Reinstating GIV alone in GIV-negative breast cancer cells reproduced ∼20% of both the 'borrowed' and the 'intrinsic' gene induction patterns from contact co-cultures; conferred resistance to anti-estrogen drugs; and enhanced tumor dissemination. Findings provide a multiomic insight into MSC→tumor cell intercellular transport and validate how transport of one such candidate, GIV, from the haves (MSCs) to have-nots (ER+ breast cancer) orchestrates aggressive disease states.

20.
bioRxiv ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36993763

RESUMEN

Crohn's disease (CD) is a complex, clinically heterogeneous disease of multifactorial origin; there is no perfect pre-clinical model, little insight into the basis for such heterogeneity, and still no cure. To address these unmet needs, we sought to explore the translational potential of adult stem cell-derived organoids that not only retain their tissue identity, but also their genetic and epigenetic disease-driving traits. We prospectively created a biobank of CD patient-derived organoid cultures (PDOs) using biopsied tissues from colons of 34 consecutive subjects representing all clinical subtypes (Montreal Classification B1-B3 and perianal disease). PDOs were generated also from healthy subjects. Comparative gene expression analyses enabled benchmarking of PDOs as tools for modeling the colonic epithelium in active disease and revealed that despite the clinical heterogeneity there are two major molecular subtypes: immune-deficient infectious-CD [IDICD] and stress and senescence-induced fibrostenotic-CD [S2FCD]. The transcriptome, genome and phenome show a surprising degree of internal consistency within each molecular subtype. The spectrum of morphometric, phenotypic, and functional changes within the "living biobank" reveals distinct differences between the molecular subtypes. These insights enabled drug screens that reversed subtype-specific phenotypes, e.g., impaired microbial clearance in IDICD was reversed using agonists for nuclear receptors, and senescence in S2FCD was rectified using senotherapeutics, but not vice versa . Phenotyped-genotyped CD-PDOs may fill the gap between basic biology and patient trials by enabling pre-clinical Phase '0' human trials for personalized therapeutics. In Brief: This work creates a prospectively biobanked phenotyped-genotyped Crohn's disease patient-derived organoids (CD-PDOs) as platforms for molecular subtyping of disease and for ushering personalized therapeutics. HIGHLIGHTS: Prospectively biobanked CD-organoids recapitulate the disease epithelium in patientsThe phenome-transcriptome-genome of CD-organoids converge on two molecular subtypesOne subtype shows impaired microbial clearance, another increased cellular senescencePhenotyped-genotyped PDOs are then used for integrative and personalized therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA