Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(29): 11488-11499, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39055026

RESUMEN

The transformation of CO2 into value-added products from an impure CO2 stream, such as flue gas or exhaust gas, directly contributes to the principle of carbon capture and utilization (CCU). Thus, we have developed a robust iron-based heterogeneous photocatalyst that can convert the exhaust gas from the car into CO with an exceptional production rate of 145 µmol g-1 h-1. We characterized this photocatalyst by PXRD, XPS, ssNMR, EXAFS, XANES, HR-TEM, and further provided mechanistic experiments, and multi-scale/level computational studies. We have reached a clear understanding of its properties and performance that indicates that this highly robust photocatalyst could be used to design an efficient visible-light-mediated reduction strategy for the transformation of impure CO2 streams into value-added products.

2.
Chem Biol Drug Des ; 97(6): 1170-1184, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33764683

RESUMEN

DNA alkylation damage, emanating from the exposure to environmental alkylating agents or produced by certain endogenous metabolic processes, affects cell viability and genomic stability. Fe(II)/2-oxoglutarate-dependent dioxygenase enzymes, such as Escherichia coli AlkB, are involved in protecting DNA from alkylation damage. Inspired by the natural product indenone derivatives reported to inhibit this class of enzymes, and a set of 2-chloro-3-amino indenone derivatives was synthesized and screened for their inhibitory properties against AlkB. The synthesis of 2-chloro-3-amino indenone derivatives was achieved from 2,3-dichloro indenones through addition-elimination method using alkyl/aryl amines under catalyst-free conditions. Using an in vitro reconstituted DNA repair assay, we have identified a 2-chloro-3-amino indenone compound 3o to be an inhibitor of AlkB. We have determined the binding affinity, mode of interaction, and kinetic parameters of inhibition of 3o and tested its ability to sensitize cells to methyl methanesulfonate that mainly produce DNA alkylation damage. This study established the potential of indenone-derived compounds as inhibitors of Fe(II)/2-oxoglutarate-dependent dioxygenase AlkB.


Asunto(s)
Alquilantes/síntesis química , Reparación del ADN , Indenos/química , Alquilantes/farmacología , Sitios de Unión , Daño del ADN , Desmetilación del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Humanos , Indenos/metabolismo , Indenos/farmacología , Cinética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Oxigenasas de Función Mixta/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica
3.
Inorg Chem ; 60(4): 2333-2346, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33502850

RESUMEN

Because of a continuous increase in energy demands and environmental concerns, a focus has been on the design and construction of a highly efficient, low-cost, environmentally friendly, and noble-metal free electrocatalyst for energy technology. Herein we report facile synthesis of the mixed-valence trinuclear cobalt complex 1 by the reaction of 2-amino-1-phenylethanol and CoCl2·6H2O in methanol as the solvent at room temperature. Further, 1 was reduced by using aqueous N2H4 as a simple reducing agent, followed by calcination at 300 °C for 3 h, yielding a nitrogen-doped mixed phase cobalt [ß-Co(OH)2 and CoO] nanocatalyst (N@MPCoNC). Both 1 and N@MPCoNC were characterized by various physicochemical techniques. Moreover, 1 was authenticated by single-crystal X-ray diffraction studies. The hybrid N@MPCoNC reveals a unique electronic and morphological structure, offering a low overpotential of 390 mV for a stable current density of 10 mA cm-2 with high durability. This N@MPCoNC showed excellent electrocatalytic as well as photocatalytic activity for oxygen evolution reaction compared to 1.

4.
Chem Asian J ; 15(8): 1339-1348, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32106358

RESUMEN

MCM-41-supported ZnO-Cu(OH)Cl nanoparticles were synthesized via an incipient wetness impregnation technique using zinc chloride and copper chloride salts as well as water at room temperature. The catalyst was characterized by powder X-ray diffraction (PXRD), infrared spectroscopy (IR), and TGA, whereas surface and morphological studies were performed by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The above studies revealed the incorporation of metal species into the pores of MCM-41, leading to a decrease in surface area of the nanoparticles that was found to be 239.079 m2 /g. The substituents attached to the ketone determine the rate of the reaction, and the utilization of the green solvent 'water' astonishingly completes the hydrogenation reaction in 45 minutes at 40 °C with 100% conversion and 100% selectivity as analyzed by gas chromatography-mass spectrometry. Hence, ZnO-Cu(OH)Cl/MCM-41 nanoparticles with 2.46 wt% zinc and 6.39 wt% copper were demonstrated as an active catalyst for the reduction of ketones without using any gaseous hydrogen source making it highly efficient as well as environmentally and economically benign.

5.
Bioorg Med Chem ; 26(14): 4100-4112, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30041948

RESUMEN

The mammalian AlkB homologue-3 (AlkBH3) is a member of the dioxygenase family of enzymes that in humans is involved in DNA dealkylation repair. Because of its role in promoting tumor cell proliferation and metastasis of cancer, extensive efforts are being directed in developing selective inhibitors for AlkBH3. Here we report synthesis, screening and evaluation of panel of arylated indenone derivatives as new class of inhibitors of AlkBH3 DNA repair activity. An efficient synthesis of 2,3-diaryl indenones from 2,3-dibromo indenones was achieved via Suzuki-Miyaura cross-coupling. Using a robust quantitative assay, we have obtained an AlkBH3 inhibitor that display specific binding and competitive mode of inhibition against DNA substrate. Finally, we established that this compound could prevent the proliferation of lung cancer cell line and enhance sensitivity to DNA damaging alkylating agent.


Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/antagonistas & inhibidores , Indenos/farmacología , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Calorimetría , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Indenos/síntesis química , Indenos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
6.
Inorg Chem ; 56(17): 10596-10608, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28825791

RESUMEN

Oxidative amidation is a valuable process for the transformation of oxygenated organic compounds to valuable amides. However, the reaction is severely limited by the use of an expensive catalyst and limited substrate scope. To circumvent these limitations, designing a transition-metal-based nanocatalyst via more straightforward and economical methodology with superior catalytic performances with broad substrate scope is desirable. To resolve the aforementioned issues, we report a facile method for the synthesis of nanocatalysts NiO and CuO by the sol-gel-assisted thermal decomposition of complexes [Ni(hep-H)(H2O)4]SO4 (SSMP-1) and [Cu(µ-hep)(BA)]2 (SSMP-2) [hep-H = 2-(2-hydroxylethyl)pyridine; BA = benzoic acid] as single-source molecular precursors (SSMPs) for the oxidative amidation of benzyl alcohol, benzaldehyde, and BA by using N,N-dimethylformamide (DMF) as the solvent and as an amine source, in the presence of tert-butylhydroperoxide (TBHP) as the oxidant, at T = 80 °C. In addition to nanocatalysts NiO and CuO, our previously reported Co/CoO nanocatalyst (CoNC), derived from the complex [CoII(hep-H)(H2O)4]SO4 (A) as an SSMP, was also explored for the aforementioned reaction. Also, we have carefully investigated the difference in the catalytic performance of Co-, Ni-, and Cu-based nanoparticles synthesized from the SSMP for the conversion of various oxygenated and unsaturated organic compounds to their respective amides. Among all, CuO showed an optimum catalytic performance for the oxidative amidation of various oxygenated and unsaturated organic compounds with a broad reaction scope. Finally, CuO can be recovered unaltered and reused for several (six times) recycles without any loss in catalytic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...