Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Cell Res ; 440(1): 114116, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830568

RESUMEN

During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.


Asunto(s)
Nefropatías Diabéticas , Glucosa , Túbulos Renales Proximales , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfohidrolasa PTEN , Animales , Humanos , Masculino , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Regulación hacia Abajo/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de Señal
2.
FEBS Lett ; 597(9): 1300-1316, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36775967

RESUMEN

The plasticity of proximal tubular epithelial cells in response to TGFß contributes to the expression of TWIST1 to drive renal fibrosis. The mechanism of TWIST1 expression is not known. We show that both PI3 kinase and its target mTORC2 increase TGFß-induced TWIST1 expression. TGFß enhances phosphorylation on Ser-660 in the protein kinase C ßII (PKCßII) hydrophobic motif site. Remarkably, phosphorylation-deficient PKCßIIS660A, kinase-dead PKCßII, and PKCßII knockdown blocked TWIST1 expression by TGFß. Inhibition of TWIST1 arrested TGFß-induced tubular cell hypertrophy and the expression of fibronectin, collagen I (α2), and α-smooth muscle actin. By contrast, TWIST1 overexpression induced these pathologies. Interestingly, the inhibition of PKCßII reduced these phenomena, which were countered by the expression of TWIST1. These results provide the first evidence for the involvement of the mTORC2-PKCßII axis in TWIST1 expression to promote tubular cell pathology.


Asunto(s)
Serina-Treonina Quinasas TOR , Factor de Crecimiento Transformador beta , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Proteína Quinasa C beta , Células Epiteliales/metabolismo
3.
J Biol Chem ; 298(9): 102246, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835217

RESUMEN

Proximal tubular epithelial cells respond to transforming growth factor ß (TGFß) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFß-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCßII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFß-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCßII and siRNAs against PKCßII significantly inhibited TGFß-induced collagen I (α2) expression. In fact, constitutively active PKCßII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCßII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCßII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFß was associated with enhanced expression of DJ-1 and activation of mTOR and PKCßII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFß-induced expression of collagen I (α2) via an mTOR-, PKCßII-, and Hif1α-dependent mechanism to regulate renal fibrosis.


Asunto(s)
Colágeno Tipo I , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Riñón , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Proteínas Oncogénicas , Proteína Desglicasa DJ-1 , Animales , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Fibrosis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Proteína Quinasa C beta/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
4.
Cell Signal ; 86: 110072, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34224844

RESUMEN

Function of mTORC1 and mTORC2 has emerged as a driver of mesangial cell pathologies in diabetic nephropathy. The mechanism of mTOR activation is poorly understood in this disease. Deptor is a constitutive subunit and a negative regulator of both mTOR complexes. Mechanistic investigation in mesangial cells revealed that high glucose decreased the expression of deptor concomitant with increased mTORC1 and mTORC2 activities, induction of hypertrophy and, expression of fibronectin and PAI-1. shRNAs against deptor mimicked these pathologic outcomes of high glucose. Conversely, overexpression of deptor significantly inhibited all effects of high glucose. To determine the mechanism of deptor suppression, we found that high glucose significantly increased the expression of EZH2, resulting in lysine-27 tri-methylation of histone H3 (H3K27Me3). Employing approaches including pharmacological inhibition, shRNA-mediated downregulation and overexpression of EZH2, we found that EZH2 regulates high glucose-induced deptor suppression along with activation of mTOR, mesangial cell hypertrophy and fibronectin/PAI-1 expression. Moreover, expression of hyperactive mTORC1 reversed shEZH2-mediated inhibition of hypertrophy and expression of fibronectin and PAI-1 by high glucose. Finally, in renal cortex of diabetic mice, we found that enhanced expression of EZH2 is associated with decreased deptor levels and increased mTOR activity and, expression of fibronectin and PAI-1. Together, our findings provide a novel mechanism for mTOR activation via EZH2 to induce mesangial cell hypertrophy and matrix expansion during early progression of diabetic nephropathy. These results suggest a strategy for leveraging the intrinsic effect of deptor to suppress mTOR activity via reducing EZH2 as a novel therapy for diabetic nephropathy.


Asunto(s)
Diabetes Mellitus Experimental , Células Mesangiales , Animales , Diabetes Mellitus Experimental/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Células Mesangiales/metabolismo , Ratones
5.
J Biol Chem ; 295(42): 14262-14278, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32732288

RESUMEN

Interaction of transforming growth factor-ß (TGFß)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFß receptor involved in the noncanonical signaling is unknown. Here, we show that TGFß increased the catalytic loop phosphorylation of platelet-derived growth factor receptor ß (PDGFRß), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFß increased phosphorylation of the PI 3-kinase-interacting Tyr-751 residue of PDGFRß, thus activating Akt. Inhibition of PDGFRß using a pharmacological inhibitor and siRNAs blocked TGFß-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRß-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRß in mesangial cells. Additionally, we demonstrate that PDGFRß-initiated phosphorylation of PRAS40 is required for TGFß-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRß is also associated with enhanced TGFß expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFß noncanonical signaling, we identified how TGFß receptor I achieves mTORC1 activation through PDGFRß-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRß in TGFß-driven renal fibrosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Fibronectinas/metabolismo , Humanos , Corteza Renal/metabolismo , Células Mesangiales/citología , Células Mesangiales/metabolismo , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Fosforilación/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
6.
FEBS Lett ; 593(16): 2261-2272, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31240704

RESUMEN

The mechanism of PTEN repression by high glucose in diabetic nephropathy is not known. Using proximal tubular cells, we show that inhibition of PI3 kinase/Akt and their inactive enzymes prevents high glucose-induced PTEN downregulation. Similarly, rapamycin (Rapa) and shRaptor block suppression of PTEN by high glucose. In contrast, the constitutive activation of Akt and mechanistic target of rapamycin (mTOR)C1 decrease the expression of PTEN, similarly to high glucose. Remarkably, PI3 kinase/Akt/mTORC1 inhibition significantly attenuates high glucose-stimulated increase in miR-214, which targets PTEN, while constitutively active Akt/mTORC1 increases miR-214. Furthermore, anti-miR-214 and mTORC1 inhibition block high glucose-induced hypertrophy and fibronectin expression. These results reveal the first evidence for the presence of a high glucose-forced positive feedback conduit between the three-layered kinase cascade and miR-214/ PTEN in tubular cell injury.


Asunto(s)
Glucosa/farmacología , Túbulos Renales Proximales/efectos de los fármacos , MicroARNs/genética , Fosfohidrolasa PTEN/genética , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Retroalimentación Fisiológica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
J Biol Chem ; 294(24): 9440-9460, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31028173

RESUMEN

S6 kinase acts as a driver for renal hypertrophy and matrix accumulation, two key pathologic signatures of diabetic nephropathy. As a post-translational modification, S6 kinase undergoes acetylation at the C terminus. The role of this acetylation to regulate kidney glomerular cell hypertrophy and matrix expansion is not known. In mesangial cells, high glucose decreased the acetylation and enhanced phosphorylation of S6 kinase and its substrates rps6 and eEF2 kinase that lead to dephosphorylation of eEF2. To determine the mechanism of S6 kinase deacetylation, we found that trichostatin A, a pan-histone deacetylase (HDAC) inhibitor, blocked all high glucose-induced effects. Furthermore, high glucose increased the expression and association of HDAC1 with S6 kinase. HDAC1 decreased the acetylation of S6 kinase and mimicked the effects of high glucose, resulting in mesangial cell hypertrophy and expression of fibronectin and collagen I (α2). In contrast, siRNA against HDAC1 inhibited these effects by high glucose. A C-terminal acetylation-mimetic mutant of S6 kinase suppressed high glucose-stimulated phosphorylation of S6 kinase, rps6 and eEF2 kinase, and inhibited the dephosphorylation of eEF2. Also, the acetylation mimetic attenuated the mesangial cell hypertrophy and fibronectin and collagen I (α2) expression. Conversely, an S6 kinase acetylation-deficient mutant induced all the above effects of high glucose. Finally, in the renal glomeruli of diabetic rats, the acetylation of S6 kinase was significantly reduced concomitant with increased HDAC1 and S6 kinase activity. In aggregate, our data uncovered a previously unrecognized role of S6 kinase deacetylation in high glucose-induced mesangial cell hypertrophy and matrix protein expression.


Asunto(s)
Diabetes Mellitus Experimental/patología , Fibronectinas/metabolismo , Glucosa/farmacología , Hipertrofia/patología , Glomérulos Renales/patología , Células Mesangiales/patología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Acetilación , Animales , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Humanos , Hipertrofia/etiología , Hipertrofia/metabolismo , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas/genética , Transducción de Señal , Edulcorantes/farmacología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
8.
PLoS One ; 13(11): e0207285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30444896

RESUMEN

TGFß promotes podocyte hypertrophy and expression of matrix proteins in fibrotic kidney diseases such as diabetic nephropathy. Both mTORC1 and mTORC2 are hyperactive in response to TGFß in various renal diseases. Deptor is a component of mTOR complexes and a constitutive inhibitor of their activities. We identified that deptor downregulation by TGFß maintains hyperactive mTOR in podocytes. To unravel the mechanism, we found that TGFß -initiated noncanonical signaling controls deptor inhibition. Pharmacological inhibitor of PI 3 kinase, Ly 294002 and pan Akt kinase inhibitor MK 2206 prevented the TGFß induced downregulation of deptor, resulting in suppression of both mTORC1 and mTORC2 activities. However, specific isoform of Akt involved in this process is not known. We identified Akt2 as predominant isoform expressed in kidney cortex, glomeruli and podocytes. TGFß time-dependently increased the activating phosphorylation of Akt2. Expression of dominant negative PI 3 kinase and its signaling inhibitor PTEN blocked Akt2 phosphorylation by TGFß. Inhibition of Akt2 using a phospho-deficient mutant that inactivates its kinase activity, as well as siRNA against the kinase markedly diminished TGFß -mediated deptor suppression, its association with mTOR and activation of mTORC1 and mTORC2. Importantly, inhibition of Akt2 blocked TGFß -induced podocyte hypertrophy and expression of the matrix protein fibronectin. This inhibition was reversed by the downregulation of deptor. Interestingly, we detected increased phosphorylation of Akt2 concomitant with TGFß expression in the kidneys of diabetic rats. Thus, our data identify previously unrecognized Akt2 kinase as a driver of TGFß induced deptor downregulation and sustained mTORC1 and mTORC2 activation. Furthermore, we provide the first evidence that deptor downstream of Akt2 contributes to podocyte hypertrophy and matrix protein expression found in glomerulosclerosis in different renal diseases.


Asunto(s)
Regulación hacia Abajo , Fibronectinas/biosíntesis , Regulación Enzimológica de la Expresión Génica , Podocitos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Cromonas/farmacología , Hipertrofia , Diana Mecanicista del Complejo 1 de la Rapamicina/biosíntesis , Diana Mecanicista del Complejo 2 de la Rapamicina/biosíntesis , Morfolinas/farmacología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Podocitos/patología , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/farmacología
9.
Exp Cell Res ; 364(1): 5-15, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29397070

RESUMEN

TGFß contributes to mesangial cell hypertrophy and matrix protein increase in various kidney diseases including diabetic nephropathy. Deptor is an mTOR-interacting protein and suppresses mTORC1 and mTORC2 activities. We have recently shown that TGFß-induced inhibition of deptor increases the mTOR activity. The mechanism by which TGFß regulates deptor expression is not known. Here we identify deptor as a target of the microRNA-181a. We show that in mesangial cells, TGFß increases the expression of miR-181a to downregulate deptor. Decrease in deptor augments mTORC2 activity, resulting in phosphorylation/activation of Akt kinase. Akt promotes inactivating phosphorylation of PRAS40 and tuberin, leading to stimulation of mTORC1. miR-181a-mimic increased mTORC1 and C2 activities, while anti-miR-181a inhibited them. mTORC1 controls protein synthesis via phosphorylation of translation initiation and elongation suppressors 4EBP-1 and eEF2 kinase. TGFß-stimulated miR-181a increased the phosphorylation of 4EBP-1 and eEF2 kinase, resulting in their inactivation. miR-181a-dependent inactivation of eEF2 kinase caused dephosphorylation of eEF2. Consequently, miR-181a-mimic increased protein synthesis and hypertrophy of mesangial cells similar to TGFß. Anti-miR-181a blocked these events in a deptor-dependent manner. Finally, TGFß-miR-181a-driven deptor downregulation increased the expression of fibronectin. Our results identify a novel mechanism involving miR-181a-driven deptor downregulation, which contributes to mesangial cell pathologies in renal complications.


Asunto(s)
Fibronectinas/metabolismo , Regulación de la Expresión Génica , Hipertrofia/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glomérulos Renales/patología , Células Mesangiales/patología , MicroARNs/genética , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Cultivadas , Regulación hacia Abajo , Hipertrofia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Glomérulos Renales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Células Mesangiales/metabolismo , Fosforilación , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/genética
10.
Cell Signal ; 42: 44-53, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28951244

RESUMEN

Glomerular mesangial cell hypertrophy contributes to the complications of diabetic nephropathy. The mechanism by which high glucose induces mesangial cell hypertrophy is poorly understood. Here we explored the role of the platelet-derived growth factor receptor-ß (PDGFRß) tyrosine kinase in driving the high glucose-induced mesangial cell hypertrophy. We show that high glucose stimulates the association of the PDGFRß with PI 3 kinase leading to tyrosine phosphorylation of the latter. High glucose-induced Akt kinase activation was also dependent upon PDGFRß and its tyrosine phosphorylation at 740/751 residues. Inhibition of PDGFRß activity, its downregulation and expression of its phospho-deficient (Y740/751F) mutant inhibited mesangial cell hypertrophy by high glucose. Interestingly, expression of constitutively active Akt reversed this inhibition, indicating a role of Akt kinase downstream of PDGFRß phosphorylation in this process. The transcription factor Hif1α is a target of Akt kinase. siRNAs against Hif1α inhibited the high glucose-induced mesangial cell hypertrophy. In contrast, increased expression of Hif1α induced hypertrophy similar to high glucose. We found that inhibition of PDGFRß and expression of PDGFRß Y740/751F mutant significantly inhibited the high glucose-induced expression of Hif1α. Importantly, expression of Hif1α countered the inhibition of mesangial cell hypertrophy induced by siPDGFRß or PDGFRß Y740/751F mutant. Finally, we show that high glucose-stimulated PDGFRß tyrosine phosphorylation at 740/751 residues and the tyrosine kinase activity of the receptor regulate the transforming growth factor-ß (TGFß) expression by Hif1α. Thus we define the cell surface PDGFRß as a major link between high glucose and its effectors Hif1α and TGFß for induction of diabetic mesangial cell hypertrophy.


Asunto(s)
Glucosa/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Mesangiales/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Transformador beta/genética , Tirosina/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Mesangiales/metabolismo , Células Mesangiales/patología , Mutación , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
11.
Am J Physiol Cell Physiol ; 313(4): C430-C447, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701356

RESUMEN

Aberrant expression of microRNAs (miRs) contributes to diabetic renal complications, including renal hypertrophy and matrix protein accumulation. Reduced expression of phosphatase and tensin homolog (PTEN) by hyperglycemia contributes to these processes. We considered involvement of miR in the downregulation of PTEN. In the renal cortex of type 1 diabetic mice, we detected increased expression of miR-214 in association with decreased levels of PTEN and enhanced Akt phosphorylation and fibronectin expression. Mesangial and proximal tubular epithelial cells exposed to high glucose showed augmented expression of miR-214. Mutagenesis studies using 3'-UTR of PTEN in a reporter construct revealed PTEN as a direct target of miR-214, which controls its expression in both of these cells. Overexpression of miR-214 decreased the levels of PTEN and increased Akt activity similar to high glucose and lead to phosphorylation of its substrates glycogen synthase kinase-3ß, PRAS40, and tuberin. In contrast, quenching of miR-214 inhibited high-glucose-induced Akt activation and its substrate phosphorylation; these changes were reversed by small interfering RNAs against PTEN. Importantly, respective expression of miR-214 or anti-miR-214 increased or decreased the mammalian target of rapamycin complex 1 (mTORC1) activity induced by high glucose. Furthermore, mTORC1 activity was controlled by miR-214-targeted PTEN via Akt activation. In addition, neutralization of high-glucose-stimulated miR-214 expression significantly inhibited cell hypertrophy and expression of the matrix protein fibronectin. Finally, the anti-miR-214-induced inhibition of these processes was reversed by the expression of constitutively active Akt kinase and hyperactive mTORC1. These results uncover a significant role of miR-214 in the activation of mTORC1 that contributes to high-glucose-induced mesangial and proximal tubular cell hypertrophy and fibronectin expression.


Asunto(s)
Glucemia/metabolismo , Proliferación Celular , Diabetes Mellitus Tipo 1/enzimología , Nefropatías Diabéticas/enzimología , Células Epiteliales/enzimología , Glomérulos Renales/enzimología , Túbulos Renales Proximales/enzimología , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Regiones no Traducidas 3' , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Células Epiteliales/patología , Fibronectinas/metabolismo , Regulación Enzimológica de la Expresión Génica , Mesangio Glomerular/metabolismo , Mesangio Glomerular/patología , Hipertrofia , Glomérulos Renales/patología , Túbulos Renales Proximales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , MicroARNs/genética , Complejos Multiproteicos/metabolismo , Fosfohidrolasa PTEN/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Transfección , Factor de Crecimiento Transformador beta/metabolismo
12.
Am J Physiol Renal Physiol ; 313(2): F291-F307, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28424212

RESUMEN

Increased expression of PDGF receptor-ß (PDGFRß) has been shown in renal proximal tubules in mice with diabetes. The core molecular network used by high glucose to induce proximal tubular epithelial cell collagen I (α2) expression is poorly understood. We hypothesized that activation of PDGFRß by high glucose increases collagen I (α2) production via the Akt/mTORC1 signaling pathway in proximal tubular epithelial cells. Using biochemical and molecular biological techniques, we investigated this hypothesis. We show that high glucose increases activating phosphorylation of the PDGFRß, resulting in phosphorylation of phosphatidylinositol 3-kinase. A specific inhibitor, JNJ-10198409, and small interfering RNAs targeting PDGFRß blocked this phosphorylation without having any effect on MEK/Erk1/2 activation. We also found that PDGFRß regulates high glucose-induced Akt activation, its targets tuberin and PRAS40 phosphorylation, and finally, mTORC1 activation. Furthermore, inhibition of PDGFRß suppressed high glucose-induced expression of collagen I (α2) in proximal tubular cells. Importantly, expression of constitutively active Akt or mTORC1 reversed these processes. As a mechanism, we found that JNJ and PDGFRß knockdown inhibited high glucose-stimulated Hif1α expression. Furthermore, overexpression of Hif1α restored expression of collagen I (α2) that was inhibited by PDGFRß knockdown in high glucose-stimulated cells. Finally, we show increased phosphorylation of PDGFRß and its association with Akt/mTORC1 activation, Hif1α expression, and elevated collagen I (α2) levels in the renal cortex of mice with diabetes. Our results identify PDGFRß as a driver in activating Akt/mTORC1 nexus for high glucose-mediated expression of collagen I (α2) in proximal tubular epithelial cells, which contributes to tubulointerstitial fibrosis in diabetic nephropathy.


Asunto(s)
Glucemia/metabolismo , Colágeno Tipo I/metabolismo , Nefropatías Diabéticas/enzimología , Túbulos Renales Proximales/enzimología , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Fibrosis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Túbulos Renales Proximales/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Transgénicos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Interferencia de ARN , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal , Factores de Tiempo , Transfección , Regulación hacia Arriba
13.
J Biol Chem ; 291(28): 14662-76, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27226530

RESUMEN

Elevated IGF-1/insulin-like growth factor-1 receptor (IGF-1R) autocrine/paracrine signaling in patients with renal cell carcinoma is associated with poor prognosis of the disease independent of their von Hippel-Lindau (VHL) status. Increased expression of IGF-1R in renal cancer cells correlates with their potency of tumor development and progression. The mechanism by which expression of IGF-1R is increased in renal carcinoma is not known. We report that VHL-deficient and VHL-positive renal cancer cells possess significantly decreased levels of mature, pre-, and pri-miR-214 than normal proximal tubular epithelial cells. We identified an miR-214 recognition element in the 3'UTR of IGF-1R mRNA and confirmed its responsiveness to miR-214. Overexpression of miR-214 decreased the IGF-1R protein levels, resulting in the inhibition of Akt kinase activity in both types of renal cancer cells. IGF-1 provoked phosphorylation and inactivation of PRAS40 in an Akt-dependent manner, leading to the activation of mTORC1 signal transduction to increase phosphorylation of S6 kinase and 4EBP-1. Phosphorylation-deficient mutants of PRAS40 and 4EBP-1 significantly inhibited IGF-1R-driven proliferation of renal cancer cells. Expression of miR-214 suppressed IGF-1R-induced phosphorylation of PRAS40, S6 kinase, and 4EBP-1, indicating inhibition of mTORC1 activity. Finally, miR-214 significantly blocked IGF-1R-forced renal cancer cell proliferation, which was reversed by expression of 3'UTR-less IGF-1R and constitutively active mTORC1. Together, our results identify a reciprocal regulation of IGF-1R levels and miR-214 expression in renal cancer cells independent of VHL status. Our data provide evidence for a novel mechanism for IGF-1R-driven renal cancer cell proliferation involving miR-214 and mTORC1.


Asunto(s)
Carcinoma de Células Renales/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , MicroARNs/genética , Complejos Multiproteicos/metabolismo , Receptor IGF Tipo 1/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Riñón/metabolismo , Riñón/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Proto-Oncogénicas c-akt/metabolismo
14.
Am J Physiol Cell Physiol ; 310(7): C583-96, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26739493

RESUMEN

PKCßII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCßII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCßII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCßII, dominant negative PKCßII, and PKCßII hydrophobic motif phosphorylation-deficient mutant, we found that PKCßII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCßII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCßII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCßII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCßII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCßII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Células Mesangiales/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Quinasa C beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Secuencias de Aminoácidos , Animales , Aumento de la Célula , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Nefropatías Diabéticas/patología , Técnicas de Silenciamiento del Gen , Glucosa/toxicidad , Humanos , Hipertrofia , Immunoblotting , Inmunoprecipitación , Diana Mecanicista del Complejo 2 de la Rapamicina , Células Mesangiales/patología , Ratones , Fosforilación , ARN Interferente Pequeño , Transfección
15.
J Biol Chem ; 291(3): 1148-61, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26472929

RESUMEN

Bone remodeling is controlled by dual actions of osteoclasts (OCs) and osteoblasts (OBs). The calcium-sensitive nuclear factor of activated T cells (NFAT) c1 transcription factor, as an OC signature gene, regulates differentiation of OCs downstream of bone morphogenetic protein-2 (BMP-2)-stimulated osteoblast-coded factors. To analyze a functional link between BMP-2 and NFATc1, we analyzed bones from OB-specific BMP-2 knock-out mice for NFATc1 expression by immunohistochemical staining and found significant reduction in NFATc1 expression. This indicated a requirement of BMP-2 for NFATc1 expression in OBs. We showed that BMP-2, via the receptor-specific Smad pathway, regulates expression of NFATc1 in OBs. Phosphatidylinositol 3-kinase/Akt signaling acting downstream of BMP-2 also drives NFATc1 expression and transcriptional activation. Under the basal condition, NFATc1 is phosphorylated. Activation of NFAT requires dephosphorylation by the calcium-dependent serine/threonine phosphatase calcineurin. We examined the role of calcium in BMP-2-stimulated regulation of NFATc1 in osteoblasts. 1,2Bis(2aminophenoxy)ethaneN,N,N',N'-tetraacetic acid acetoxymethyl ester, an inhibitor of intracellular calcium abundance, blocked BMP-2-induced transcription of NFATc1. Interestingly, BMP-2 induced calcium release from intracellular stores and increased calcineurin phosphatase activity, resulting in NFATc1 nuclear translocation. Cyclosporin A, which inhibits calcineurin upstream of NFATc1, blocked BMP-2-induced NFATc1 mRNA and protein expression. Expression of NFATc1 directly increased its transcription and VIVIT peptide, an inhibitor of NFATc1, suppressed BMP-2-stimulated NFATc1 transcription, confirming its autoregulation. Together, these data show a role of NFATc1 downstream of BMP-2 in mouse bone development and provide novel evidence for the presence of a cross-talk among Smad, phosphatidylinositol 3-kinase/Akt, and Ca(2+) signaling for BMP-2-induced NFATc1 expression through an autoregulatory loop.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción NFATC/agonistas , Osteoblastos/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Proteína Morfogenética Ósea 2/genética , Calcineurina/química , Calcineurina/metabolismo , Quelantes del Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Smad5/agonistas , Proteína Smad5/genética , Proteína Smad5/metabolismo
16.
Cell Signal ; 27(7): 1276-85, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25797045

RESUMEN

High glucose milieu inhibits PTEN expression to activate Akt kinase and induces glomerular mesangial cell hypertrophy and matrix protein expression in diabetic nephropathy. Specific mechanism by which high glucose inhibits PTEN expression is not clear. We found that high glucose increased the expression of the microRNA-26a (miR-26a) in mesangial cells. Using a sensor plasmid with 3'UTR-driven luciferase, we showed PTEN as a target of miR-26a in response to high glucose. Overexpression of miR-26a reduced the PTEN protein levels resulting in increased Akt kinase activity similar to high glucose treatment. In contrast, anti-miR-26a reversed high glucose-induced suppression of PTEN with concomitant inhibition of Akt kinase activity. Akt-mediated phosphorylation of tuberin and PRAS40 regulates mTORC1, which is necessary for mesangial cell hypertrophy and matrix protein expression. Inhibition of high glucose-induced miR-26a blocked phosphorylation of tuberin and PRAS40, which lead to suppression of phosphorylation of S6 kinase and 4EBP-1, two substrates of mTORC1. Furthermore, we show that expression of miR-26a induced mesangial cell hypertrophy and increased fibronectin and collagen I (α2) expression similar to that observed with the cells incubated with high glucose. Anti-miR-26a inhibited these phenomena in response to high glucose. Together our results provide the first evidence for the involvement of miR-26a in high glucose-induced mesangial cell hypertrophy and matrix protein expression. These data indicate the potential therapeutic utility of anti-miR-26a for the complications of diabetic kidney disease.


Asunto(s)
Glucosa/farmacología , MicroARNs/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regiones no Traducidas 3' , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Secuencia de Bases , Proteínas Portadoras/metabolismo , Línea Celular , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Mesangiales/citología , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/química , Oligonucleótidos Antisentido/metabolismo , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Ratas , Proteínas Quinasas S6 Ribosómicas/metabolismo , Alineación de Secuencia , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
17.
J Biol Chem ; 289(47): 32703-16, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288788

RESUMEN

High glucose-induced Akt acts as a signaling hub for mesangial cell hypertrophy and matrix expansion, which are recognized as cardinal signatures for the development of diabetic nephropathy. How mesangial cells sustain the activated state of Akt is not clearly understood. Here we show Akt-dependent phosphorylation of the transcription factor FoxO1 by high glucose. Phosphorylation-deficient, constitutively active FoxO1 inhibited the high glucose-induced phosphorylation of Akt to suppress the phosphorylation/inactivation of PRAS40 and mTORC1 activity. In contrast, dominant negative FoxO1 increased the phosphorylation of Akt, resulting in increased mTORC1 activity similar to high glucose treatment. Notably, FoxO1 regulates high glucose-induced protein synthesis, hypertrophy, and expression of fibronectin and PAI-1. High glucose paves the way for complications of diabetic nephropathy through the production of reactive oxygen species (ROS). We considered whether the FoxO1 target antioxidant enzyme catalase contributes to sustained activation of Akt. High glucose-inactivated FoxO1 decreases the expression of catalase to increase the production of ROS. Moreover, we show that catalase blocks high glucose-stimulated Akt phosphorylation to attenuate the inactivation of FoxO1 and PRAS40, resulting in the inhibition of mTORC1 and mesangial cell hypertrophy and fibronectin and PAI-1 expression. Finally, using kidney cortices from type 1 diabetic OVE26 mice, we show that increased FoxO1 phosphorylation is associated with decreased catalase expression and increased fibronectin and PAI-1 expression. Together, our results provide the first evidence for the presence of a positive feedback loop for the sustained activation of Akt involving inactivated FoxO1 and a decrease in catalase expression, leading to increased ROS and mesangial cell hypertrophy and matrix protein expression.


Asunto(s)
Retroalimentación Fisiológica/efectos de los fármacos , Factores de Transcripción Forkhead/metabolismo , Glucosa/farmacología , Células Mesangiales/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Catalasa/genética , Catalasa/metabolismo , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Fibronectinas/metabolismo , Expresión Génica/efectos de los fármacos , Immunoblotting , Corteza Renal/metabolismo , Corteza Renal/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Mesangiales/metabolismo , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Inhibidor 1 de Activador Plasminogénico/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
PLoS One ; 9(10): e109608, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333702

RESUMEN

Enhanced TGFß activity contributes to the accumulation of matrix proteins including collagen I (α2) by proximal tubular epithelial cells in progressive kidney disease. Although TGFß rapidly activates its canonical Smad signaling pathway, it also recruits noncanonical pathway involving mTOR kinase to regulate renal matrix expansion. The mechanism by which chronic TGFß treatment maintains increased mTOR activity to induce the matrix protein collagen I (α2) expression is not known. Deptor is an mTOR interacting protein that suppresses mTOR activity in both mTORC1 and mTORC2. In proximal tubular epithelial cells, TGFß reduced deptor levels in a time-dependent manner with concomitant increase in both mTORC1 and mTORC2 activities. Expression of deptor abrogated activity of mTORC1 and mTORC2, resulting in inhibition of collagen I (α2) mRNA and protein expression via transcriptional mechanism. In contrast, neutralization of endogenous deptor by shRNAs increased activity of both mTOR complexes and expression of collagen I (α2) similar to TGFß treatment. Importantly, downregulation of deptor by TGFß increased the expression of Hif1α by increasing translation of its mRNA. TGFß-induced deptor downregulation promotes Hif1α binding to its cognate hypoxia responsive element in the collagen I (α2) gene to control its protein expression via direct transcriptional mechanism. Interestingly, knockdown of raptor to specifically block mTORC1 activity significantly inhibited expression of collagen I (α2) and Hif1α while inhibition of rictor to prevent selectively mTORC2 activation did not have any effect. Critically, our data provide evidence for the requirement of TGFß-activated mTORC1 only by deptor downregulation, which dominates upon the bystander mTORC2 activity for enhanced expression of collagen I (α2). Our results also suggest the presence of a safeguard mechanism involving deptor-mediated suppression of mTORC1 activity against developing TGFß-induced renal fibrosis.


Asunto(s)
Colágeno Tipo I/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Animales , Línea Celular , Colágeno Tipo I/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Transducción de Señal/efectos de los fármacos
19.
Exp Cell Res ; 328(1): 99-117, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25016284

RESUMEN

Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKß, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKß blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKß. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4 and dominant negative IKKß. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma de Células Renales/patología , Proteínas Portadoras/metabolismo , Quinasa I-kappa B/metabolismo , Túbulos Renales/metabolismo , MicroARNs/genética , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Western Blotting , Carcinoma de Células Renales/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Humanos , Inmunoprecipitación , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Invasividad Neoplásica , Fosforilación , Proteína Asociada al mTOR Insensible a la Rapamicina
20.
Am J Physiol Cell Physiol ; 306(11): C1089-100, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24740537

RESUMEN

Platelet-derived growth factor BB and its receptor (PDGFRß) play a pivotal role in the development of renal glomerular mesangial cells. Their roles in increased mesangial cell proliferation during mesangioproliferative glomerulonephritis have long been noted, but the operating logic of signaling mechanisms regulating these changes remains poorly understood. We examined the role of a recently identified MAPK, Erk5, in this process. PDGF increased the activating phosphorylation of Erk5 and tyrosine phosphorylation of proteins in a time-dependent manner. A pharmacologic inhibitor of Erk5, XMD8-92, abrogated PDGF-induced DNA synthesis and mesangial cell proliferation. Similarly, expression of dominant negative Erk5 or siRNAs against Erk5 blocked PDGF-stimulated DNA synthesis and proliferation. Inhibition of Erk5 attenuated expression of cyclin D1 mRNA and protein, resulting in suppression of CDK4-mediated phosphorylation of the tumor suppressor protein pRb. Expression of cyclin D1 or CDK4 prevented the dominant negative Erk5- or siErk5-mediated inhibition of DNA synthesis and mesangial cell proliferation induced by PDGF. We have previously shown that phosphatidylinositol 3-kinase (PI3-kinase) contributes to PDGF-induced proliferation of mesangial cells. Inhibition of PI3-kinase blocked PDGF-induced phosphorylation of Erk5. Since PI3-kinase acts through Akt, we determined the role of Erk5 on Akt phosphorylation. XMD8-92, dominant negative Erk5, and siErk5 inhibited phosphorylation of Akt by PDGF. Interestingly, we found inhibition of PDGF-induced Erk5 phosphorylation by a pharmacological inhibitor of Akt kinase and kinase dead Akt in mesangial cells. Thus our data unfold the presence of a positive feedback microcircuit between Erk5 and Akt downstream of PI3-kinase nodal point for PDGF-induced mesangial cell proliferation.


Asunto(s)
Proliferación Celular , Retroalimentación Fisiológica/fisiología , Células Mesangiales/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/biosíntesis , Proteína Oncogénica v-akt/biosíntesis , Factor de Crecimiento Derivado de Plaquetas/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Retroalimentación Fisiológica/efectos de los fármacos , Células Mesangiales/efectos de los fármacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...