Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078651

RESUMEN

To investigate the role of the nuclear receptor NR5A1 in the testis after sex determination, we analyzed mice lacking NR5A1 in Sertoli cells (SCs) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impaired the expression of genes characteristic of SC identity (e.g. Sox9 and Amh), caused SC death from E14.5 onwards through a Trp53-independent mechanism related to anoikis, and induced disorganization of the testis cords. Together, these effects caused germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SCs changed their molecular identity: some acquired a 'pre-granulosa-like' cell identity, whereas other reverted to a 'supporting progenitor-like' cell identity, most of them being 'intersex' because they expressed both testicular and ovarian genes. Fetal Leydig cells (LCs) did not display significant changes, indicating that SCs are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LCs were absent from postnatal testes. In addition, adult mutant males displayed persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which could be explained by the loss of AMH and testosterone synthesis due to SC failure.


Asunto(s)
Anoicis , Células de Sertoli , Animales , Masculino , Ratones , Anoicis/genética , Muerte Celular/genética , Células de Sertoli/metabolismo , Testículo/metabolismo
2.
Development ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063846

RESUMEN

To investigate the role of the nuclear receptor NR5A1 in testis after sex determination, we have analyzed mice lacking NR5A1 in Sertoli cells (SC) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impairs the expression of genes characteristic of the SC identity (e.g., Sox9, Amh), causes SC death from E14.5 through a Trp53-independent mechanism related to anoikis, and induces disorganization of the testis cords. Together, these effects cause germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SC change their molecular identity: some acquire a "pre-granulosa-like" identity, while other revert to a "supporting progenitor-like" cell identity, most of them being "intersex" because they express both testicular and ovarian genes. Fetal Leydig cells (LC) do not display significant changes, indicating that SC are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LC were absent from the postnatal testes. In addition, adult mutant males display persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which can be explained by the loss of AMH and testosterone synthesis due to SC failure.

3.
Biomedicines ; 11(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36672706

RESUMEN

It has been established for almost 30 years that the retinoic acid receptor (RAR) signalling pathway plays essential roles in the morphogenesis of a large variety of organs and systems. Here, we used a temporally controlled genetic ablation procedure to precisely determine the time windows requiring RAR functions. Our results indicate that from E8.5 to E9.5, RAR functions are critical for the axial rotation of the embryo, the appearance of the sinus venosus, the modelling of blood vessels, and the formation of forelimb buds, lung buds, dorsal pancreatic bud, lens, and otocyst. They also reveal that E9.5 to E10.5 spans a critical developmental period during which the RARs are required for trachea formation, lung branching morphogenesis, patterning of great arteries derived from aortic arches, closure of the optic fissure, and growth of inner ear structures and of facial processes. Comparing the phenotypes of mutants lacking the 3 RARs with that of mutants deprived of all-trans retinoic acid (ATRA) synthesising enzymes establishes that cardiac looping is the earliest known morphogenetic event requiring a functional ATRA-activated RAR signalling pathway.

4.
Sci Adv ; 8(21): eabm0972, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35613264

RESUMEN

Gonadal sex determination represents a unique model for studying cell fate decisions. However, a complete understanding of the different cell lineages forming the developing testis and ovary remains elusive. Here, we investigated the origin, specification, and subsequent sex-specific differentiation of a previously uncharacterized population of supporting-like cells (SLCs) in the developing mouse gonads. The SLC lineage is closely related to the coelomic epithelium and specified as early as E10.5, making it the first somatic lineage to be specified in the bipotential gonad. SLC progenitors are localized within the genital ridge at the interface with the mesonephros and initially coexpress Wnt4 and Sox9. SLCs become sexually dimorphic around E12.5, progressively acquire a more Sertoli- or pregranulosa-like identity and contribute to the formation of the rete testis and rete ovarii. Last, we found that WNT4 is a crucial regulator of the SLC lineage and is required for normal development of the rete testis.

5.
Cells ; 11(5)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269513

RESUMEN

Retinoic acid signaling is indispensable for the completion of spermatogenesis. It is known that loss of retinoic acid nuclear receptor alpha (RARA) induces male sterility due to seminiferous epithelium degeneration. Initial genetic studies established that RARA acts in Sertoli cells, but a recent paper proposed that RARA is also instrumental in germ cells. In the present study, we have re-assessed the function of RARA in germ cells by genetically ablating the Rara gene in spermatogonia and their progenies using a cell-specific conditional mutagenesis approach. We show that loss of Rara in postnatal male germ cells does not alter the histology of the seminiferous epithelium. Furthermore, RARA-deficient germ cells differentiate normally and give rise to normal, living pups. This establishes that RARA plays no crucial role in germ cells. We also tested whether RARA is required in Sertoli cells during the fetal period or after birth. For this purpose, we deleted the Rara gene in Sertoli cells at postnatal day 15 (PN15), i.e., after the onset of the first spermatogenic wave. To do so, we used temporally controlled cell-specific mutagenesis. By comparing the testis phenotypes generated when Rara is lost either at PN15 or at embryonic day 13, we show that RARA exerts all of its functions in Sertoli cells not at the fetal stage but from puberty.


Asunto(s)
Células de Sertoli , Maduración Sexual , Animales , Masculino , Receptor alfa de Ácido Retinoico/genética , Espermatogonias , Tretinoina
6.
Cell Stem Cell ; 29(1): 131-148.e10, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34706256

RESUMEN

Hematopoietic stem cells (HSCs) rely on complex regulatory networks to preserve stemness. Due to the scarcity of HSCs, technical challenges have limited our insights into the interplay between metabolites, transcription, and the epigenome. In this study, we generated low-input metabolomics, transcriptomics, chromatin accessibility, and chromatin immunoprecipitation data, revealing distinct metabolic hubs that are enriched in HSCs and their downstream multipotent progenitors. Mechanistically, we uncover a non-classical retinoic acid (RA) signaling axis that regulates HSC function. We show that HSCs rely on Cyp26b1, an enzyme conventionally considered to limit RA effects in the cell. In contrast to the traditional view, we demonstrate that Cyp26b1 is indispensable for production of the active metabolite 4-oxo-RA. Further, RA receptor beta (Rarb) is required for complete transmission of 4-oxo-RA-mediated signaling to maintain stem cells. Our findings emphasize that a single metabolite controls stem cell fate by instructing epigenetic and transcriptional attributes.


Asunto(s)
Células Madre Hematopoyéticas , Tretinoina , Diferenciación Celular , Ácido Retinoico 4-Hidroxilasa/genética , Transducción de Señal , Tretinoina/farmacología
7.
Elife ; 102021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34623260

RESUMEN

Retinoic acid (RA) is an essential signaling molecule for cardiac development and plays a protective role in the heart after myocardial infarction (MI). In both cases, the effect of RA signaling on cardiomyocytes, the principle cell type of the heart, has been reported to be indirect. Here we have developed an inducible murine transgenic RA-reporter line using CreERT2 technology that permits lineage tracing of RA-responsive cells and faithfully recapitulates endogenous RA activity in multiple organs during embryonic development. Strikingly, we have observed a direct RA response in cardiomyocytes during mid-late gestation and after MI. Ablation of RA signaling through deletion of the Aldh1a1/a2/a3 genes encoding RA-synthesizing enzymes leads to increased cardiomyocyte apoptosis in adults subjected to MI. RNA sequencing analysis reveals Tgm2 and Ace1, two genes with well-established links to cardiac repair, as potential targets of RA signaling in primary cardiomyocytes, thereby providing novel links between the RA pathway and heart disease.


Asunto(s)
Infarto del Miocardio/complicaciones , Miocitos Cardíacos/patología , Tretinoina/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Animales , Apoptosis , Desarrollo Embrionario , Femenino , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal
8.
Biomedicines ; 9(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203310

RESUMEN

Anorectal malformations (ARMs) are relatively common congenital abnormalities, but their pathogenesis is poorly understood. Previous gene knockout studies indicated that the signalling pathway mediated by the retinoic acid receptors (RAR) is instrumental to the formation of the anorectal canal and of various urogenital structures. Here, we show that simultaneous ablation of the three RARs in the mouse embryo results in a spectrum of malformations of the pelvic organs in which anorectal and urinary bladder ageneses are consistently associated. We found that these ageneses could be accounted for by defects in the processes of growth and migration of the cloaca, the embryonic structure from which the anorectal canal and urinary bladder originate. We further show that these defects are preceded by a failure of the lateral shift of the umbilical arteries and propose vascular abnormalities as a possible cause of ARM. Through the comparisons of these phenotypes with those of other mutant mice and of human patients, we would like to suggest that morphological data may provide a solid base to test molecular as well as clinical hypotheses.

9.
PLoS Biol ; 18(11): e3000902, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33201874

RESUMEN

Coordinated development of muscles, tendons, and their attachment sites ensures emergence of functional musculoskeletal units that are adapted to diverse anatomical demands among different species. How these different tissues are patterned and functionally assembled during embryogenesis is poorly understood. Here, we investigated the morphogenesis of extraocular muscles (EOMs), an evolutionary conserved cranial muscle group that is crucial for the coordinated movement of the eyeballs and for visual acuity. By means of lineage analysis, we redefined the cellular origins of periocular connective tissues interacting with the EOMs, which do not arise exclusively from neural crest mesenchyme as previously thought. Using 3D imaging approaches, we established an integrative blueprint for the EOM functional unit. By doing so, we identified a developmental time window in which individual EOMs emerge from a unique muscle anlage and establish insertions in the sclera, which sets these muscles apart from classical muscle-to-bone type of insertions. Further, we demonstrate that the eyeballs are a source of diffusible all-trans retinoic acid (ATRA) that allow their targeting by the EOMs in a temporal and dose-dependent manner. Using genetically modified mice and inhibitor treatments, we find that endogenous local variations in the concentration of retinoids contribute to the establishment of tendon condensations and attachment sites that precede the initiation of muscle patterning. Collectively, our results highlight how global and site-specific programs are deployed for the assembly of muscle functional units with precise definition of muscle shapes and topographical wiring of their tendon attachments.


Asunto(s)
Músculos Oculomotores/embriología , Músculos Oculomotores/crecimiento & desarrollo , Tretinoina/metabolismo , Animales , Tejido Conectivo/fisiología , Desarrollo Embrionario , Ojo , Imagenología Tridimensional/métodos , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Morfogénesis , Transducción de Señal , Tendones/fisiología , Tretinoina/fisiología
10.
Sci Adv ; 6(21)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32917583

RESUMEN

Gametes are generated through a specialized cell differentiation process, meiosis, which, in ovaries of most mammals, is initiated during fetal life. All-trans retinoic acid (ATRA) is considered as the molecular signal triggering meiosis initiation. In the present study, we analyzed female fetuses ubiquitously lacking all ATRA nuclear receptors (RAR), obtained through a tamoxifen-inducible cre recombinase-mediated gene targeting approach. Unexpectedly, mutant oocytes robustly expressed meiotic genes, including the meiotic gatekeeper STRA8. In addition, ovaries from mutant fetuses grafted into adult recipient females yielded offspring bearing null alleles for all Rar genes. Thus, our results show that RAR are fully dispensable for meiotic initiation, as well as for the production of functional oocytes. Assuming that the effects of ATRA all rely on RAR, our study goes against the current model according to which meiosis is triggered by endogenous ATRA in the developing ovary. It therefore revives the search for the meiosis-inducing substance.


Asunto(s)
Ovario , Receptores de Ácido Retinoico , Animales , Femenino , Feto , Mamíferos , Meiosis/genética , Ratones , Receptores de Ácido Retinoico/genética , Tretinoina/farmacología
11.
Sci Adv ; 6(21): eaaz1261, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32494737

RESUMEN

In mammals, the timing of meiosis entry is regulated by signals from the gonadal environment. All-trans retinoic acid (ATRA) signaling is considered the key pathway that promotes Stra8 (stimulated by retinoic acid 8) expression and, in turn, meiosis entry. This model, however, is debated because it is based on analyzing the effects of exogenous ATRA on ex vivo gonadal cultures, which not accurately reflects the role of endogenous ATRA. Aldh1a1 and Aldh1a2, two retinaldehyde dehydrogenases synthesizing ATRA, are expressed in the mouse ovaries when meiosis initiates. Contrary to the present view, here, we demonstrate that ATRA-responsive cells are scarce in the ovary. Using three distinct gene deletion models for Aldh1a1;Aldh1a2;Aldh1a3, we show that Stra8 expression is independent of ATRA production by ALDH1A proteins and that germ cells progress through meiosis. Together, these data demonstrate that ATRA signaling is dispensable for instructing meiosis initiation in female germ cells.


Asunto(s)
Meiosis , Ovario , Animales , Femenino , Células Germinativas/metabolismo , Mamíferos/metabolismo , Ratones , Ovario/metabolismo , Proteínas/metabolismo , Tretinoina/farmacología
12.
Sci Rep ; 9(1): 14677, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31605007

RESUMEN

Primary aldosteronism (PA) is the most frequent form of secondary arterial hypertension. Mutations in different genes increase aldosterone production in PA, but additional mechanisms may contribute to increased cell proliferation and aldosterone producing adenoma (APA) development. We performed transcriptome analysis in APA and identified retinoic acid receptor alpha (RARα) signaling as a central molecular network involved in nodule formation. To understand how RARα modulates adrenal structure and function, we explored the adrenal phenotype of male and female Rarα knockout mice. Inactivation of Rarα in mice led to significant structural disorganization of the adrenal cortex in both sexes, with increased adrenal cortex size in female mice and increased cell proliferation in males. Abnormalities of vessel architecture and extracellular matrix were due to decreased Vegfa expression and modifications in extracellular matrix components. On the molecular level, Rarα inactivation leads to inhibition of non-canonical Wnt signaling, without affecting the canonical Wnt pathway nor PKA signaling. Our study suggests that Rarα contributes to the maintenance of normal adrenal cortex structure and cell proliferation, by modulating Wnt signaling. Dysregulation of this interaction may contribute to abnormal cell proliferation, creating a propitious environment for the emergence of specific driver mutations in PA.


Asunto(s)
Hiperaldosteronismo/genética , Hipertensión/genética , Receptor alfa de Ácido Retinoico/genética , Factor A de Crecimiento Endotelial Vascular/genética , Corteza Suprarrenal/metabolismo , Corteza Suprarrenal/patología , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/patología , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Proliferación Celular/genética , Matriz Extracelular/genética , Humanos , Hiperaldosteronismo/patología , Hipertensión/patología , Ratones , Ratones Noqueados , Mutación/genética , Vía de Señalización Wnt/genética
13.
Development ; 146(13)2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273085

RESUMEN

Retinoic acid (RA), a metabolite of retinol (vitamin A), functions as a ligand for nuclear RA receptors (RARs) that regulate development of chordate animals. RA-RARs can activate or repress transcription of key developmental genes. Genetic studies in mouse and zebrafish embryos that are deficient in RA-generating enzymes or RARs have been instrumental in identifying RA functions, revealing that RA signaling regulates development of many organs and tissues, including the body axis, spinal cord, forelimbs, heart, eye and reproductive tract. An understanding of the normal functions of RA signaling during development will guide efforts for use of RA as a therapeutic agent to improve human health. Here, we provide an overview of RA signaling and highlight its key functions during development.


Asunto(s)
Genes del Desarrollo , Receptores de Ácido Retinoico/fisiología , Tretinoina/farmacología , Tretinoina/fisiología , Animales , Embrión de Mamíferos , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes del Desarrollo/efectos de los fármacos , Genes del Desarrollo/genética , Humanos , Ratones , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Tretinoina/metabolismo , Pez Cebra
14.
Development ; 146(1)2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30487180

RESUMEN

In mammals, all-trans retinoic acid (ATRA) is instrumental to spermatogenesis. It is synthesized by two retinaldehyde dehydrogenases (RALDH) present in both Sertoli cells (SCs) and germ cells (GCs). In order to determine the relative contributions of each source of ATRA, we have generated mice lacking all RALDH activities in the seminiferous epithelium (SE). We show that both the SC- and GC-derived sources of ATRA cooperate to initiate and propagate spermatogenetic waves at puberty. In adults, they exert redundant functions and, against all expectations, the GC-derived source does not perform any specific roles despite contributing to two-thirds of the total amount of ATRA present in the testis. The production from SCs is sufficient to maintain the periodic expression of genes in SCs, as well and the cycle and wave of the SE, which account for the steady production of spermatozoa. The production from SCs is also specifically required for spermiation. Importantly, our study shows that spermatogonia differentiation depends upon the ATRA synthesized by RALDH inside the SE, whereas initiation of meiosis and expression of STRA8 by spermatocytes can occur without ATRA.


Asunto(s)
Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Tretinoina/metabolismo , Animales , Femenino , Masculino , Meiosis/fisiología , Ratones , Ratones Transgénicos , Epitelio Seminífero/citología , Células de Sertoli/citología , Espermatocitos/citología , Espermatogonias/citología
15.
Kidney Int ; 92(6): 1444-1457, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28756872

RESUMEN

Proliferation of glomerular epithelial cells, including podocytes, is a key histologic feature of crescentic glomerulonephritis. We previously found that retinoic acid (RA) inhibits proliferation and induces differentiation of podocytes by activating RA receptor-α (RARα) in a murine model of HIV-associated nephropathy. Here, we examined whether RA would similarly protect podocytes against nephrotoxic serum-induced crescentic glomerulonephritis and whether this effect was mediated by podocyte RARα. RA treatment markedly improved renal function and reduced the number of crescentic lesions in nephritic wild-type mice, while this protection was largely lost in mice with podocyte-specific ablation of Rara (Pod-Rara knockout). At a cellular level, RA significantly restored the expression of podocyte differentiation markers in nephritic wild-type mice, but not in nephritic Pod-Rara knockout mice. Furthermore, RA suppressed the expression of cell injury, proliferation, and parietal epithelial cell markers in nephritic wild-type mice, all of which were significantly dampened in nephritic Pod-Rara knockout mice. Interestingly, RA treatment led to the coexpression of podocyte and parietal epithelial cell markers in a small subset of glomerular cells in nephritic mice, suggesting that RA may induce transdifferentiation of parietal epithelial cells toward a podocyte phenotype. In vitro, RA directly inhibited the proliferation of parietal epithelial cells and enhanced the expression of podocyte markers. In vivo lineage tracing of labeled parietal epithelial cells confirmed that RA increased the number of parietal epithelial cells expressing podocyte markers in nephritic glomeruli. Thus, RA attenuates crescentic glomerulonephritis primarily through RARα-mediated protection of podocytes and in part through the inhibition of parietal epithelial cell proliferation and induction of their transdifferentiation into podocytes.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Glomerulonefritis/tratamiento farmacológico , Podocitos/efectos de los fármacos , Sustancias Protectoras/farmacología , Receptor alfa de Ácido Retinoico/metabolismo , Tretinoina/farmacología , Animales , Autoanticuerpos/administración & dosificación , Autoanticuerpos/inmunología , Biomarcadores/metabolismo , Biopsia , Cápsula Glomerular/citología , Cápsula Glomerular/efectos de los fármacos , Cápsula Glomerular/fisiología , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/patología , Podocitos/fisiología , Sustancias Protectoras/uso terapéutico , Receptor alfa de Ácido Retinoico/genética , Tretinoina/uso terapéutico
16.
Dev Biol ; 426(1): 17-27, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28456466

RESUMEN

The differentiation of germ cells into oogonia or spermatogonia is the first step that eventually gives rise to fully mature gametes. In the female fetal gonad, the RSPO1/WNT/CTNNB1 signalling pathway is involved in primordial germ cell proliferation and differentiation into female germ cells, which are able to enter meiosis. In the postnatal testis, the WNT/CTNNB1 pathway also mediates proliferation of spermatogonial stem cells and progenitor cells. Here we show that forced activation of the WNT/CTNNB1 pathway in fetal gonocytes using transgenic mice leads to deregulated spermatogonial proliferation, and exhaustion of the spermatocytes by apoptosis, resulting in a hypoplastic testis. These findings demonstrate that a finely tuned timing in WNT/CTNNB1 signalling activity is required for spermatogenesis.


Asunto(s)
Células Madre Germinales Adultas/citología , Activación Enzimática/fisiología , Espermatogénesis/fisiología , Espermatogonias/citología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Espermatocitos/citología , Testículo/patología
17.
Curr Top Dev Biol ; 125: 191-225, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28527572

RESUMEN

The modalities of gametogenesis differ markedly between sexes. Female are born with a definitive reserve of oocytes whose size is crucial to ensure fertility. Male fertility, in contrast, relies on a tightly regulated balance between germ cell self-renewal and differentiation, which operates throughout life, according to recurring spatial and temporal patterns. Genetic and pharmacological studies conducted in the mouse and discussed in this review have revealed that all-trans retinoic acid and its nuclear receptors are major players of gametogenesis and are instrumental to fertility in both sexes.


Asunto(s)
Gametogénesis , Óvulo/citología , Espermatozoides/citología , Tretinoina/fisiología , Animales , Diferenciación Celular , Femenino , Feto/metabolismo , Humanos , Masculino , Meiosis , Ratones , Ovario/metabolismo , Óvulo/metabolismo , Receptores de Ácido Retinoico/genética , Transducción de Señal , Espermatozoides/metabolismo , Testículo/metabolismo
18.
Dev Biol ; 424(2): 208-220, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28274610

RESUMEN

Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function.


Asunto(s)
Ovario/embriología , Ovario/metabolismo , Transducción de Señal/efectos de los fármacos , Tretinoina/farmacología , Familia de Aldehído Deshidrogenasa 1 , Animales , Linaje de la Célula/efectos de los fármacos , Femenino , Feto/embriología , Feto/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes Dominantes , Isoenzimas/metabolismo , Masculino , Mamíferos , Meiosis/efectos de los fármacos , Mesonefro/efectos de los fármacos , Mesonefro/embriología , Mesonefro/metabolismo , Ratones , Ovario/efectos de los fármacos , Receptores de Ácido Retinoico/metabolismo , Retinal-Deshidrogenasa/metabolismo , Retinoides/farmacología , Procesos de Determinación del Sexo/efectos de los fármacos , Técnicas de Cultivo de Tejidos
19.
Exp Eye Res ; 154: 190-195, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27840061

RESUMEN

Retinoic acid (RA) is a biologically active metabolite of vitamin A (retinol) that serves as an important signaling molecule in orchestrating diverse developmental processes including multiple roles during ocular development. Loss-of-function studies using gene knockouts of RA-synthesizing enzymes encoded by Aldh1a1, Aldh1a2, and Aldh1a3 (also known as Raldh1, Raldh2, and Raldh3) have provided valuable insight into how RA controls eye morphogenesis including corneal development. However, it is unclear whether endogenous RA is required for maintenance and regeneration of adult cornea. Here, we investigated the role of Aldh1a genes in the adult cornea using a novel conditional Aldh1a1,2,3-flox/flox;Rosa26-CreERT2 loss-of-function mouse model to determine the biological function of RA. Our findings indicate that loss of RA synthesis results in corneal thinning characterized by reduced thickness of the stromal layer, impaired corneal epithelial cell proliferation, and increased apoptosis. Corneal thinning in Aldh1a-deficient mice was significantly rescued by RA administration, indicating an important role of endogenous RA signaling in adult corneal homeostasis and regeneration. Thus, Aldh1a1,2,3-flox/flox;Rosa26-CreERT2 mice provide a useful model for investigating the mechanistic role of RA signaling in adult corneal maintenance and could provide new insights into therapeutic approaches for controlling corneal repair to prevent vision loss.


Asunto(s)
Apoptosis , Epitelio Corneal/metabolismo , Regeneración/fisiología , Tretinoina/metabolismo , Animales , Proliferación Celular , Epitelio Corneal/patología , Ratones , Transducción de Señal
20.
PLoS Genet ; 11(10): e1005501, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26427057

RESUMEN

All-trans retinoic acid (ATRA) is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG) or all ATRA receptors (RARA, RARB and RARG). We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas Proto-Oncogénicas c-kit/genética , Espermatogonias/crecimiento & desarrollo , Factores de Transcripción/biosíntesis , Tretinoina/metabolismo , Animales , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Meiosis/genética , Ratones , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores X Retinoide/genética , Células de Sertoli/metabolismo , Espermatogénesis/genética , Espermatogonias/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...