Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
EClinicalMedicine ; 75: 102760, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39170936

RESUMEN

Background: Repetitive transcranial magnetic stimulation (rTMS) is frequently used as an adjunctive treatment with antidepressants for depression. We aimed to evaluate the clinical efficacy and safety of antidepressant classes when administered concurrently with rTMS for the management of major depressive disorder (MDD). Methods: In this systematic review and meta-analysis, MEDLINE, Embase, PsycINFO, and the Cochrane Library were searched from inception to April 12th 2024 for terms relating to medication, depression, and rTMS and appraised by 2 independent screeners. All randomized clinical trials that prospectively evaluated a specific antidepressant adjunctively with sham rTMS as a control in MDD were included. The study was registered with PROSPERO (CRD42023418435). The primary outcome measure assessed symptomatic improvement measured by formal depression scales. We used a random-effects model with pooled Standardized Mean Differences (SMDs) and log odds ratios (OR). All studies were assessed for their methodological quality and bias using the Cochrane Collaboration Risk of Bias tool version 2 (RoB2). Findings: 14 articles from 5376 identified studies were included in the systematic review and meta-analysis. There was only sufficient trial data to evaluate the effects of rTMS and combination therapy with selective serotonin reuptake inhibitors (SSRIs) and selective norepinephrine reuptake inhibitors (SNRIs). Across studies, 848 participants (mean [SD] age:41.1 [18.7] years for SSRIs, 51.8 [3.8] years for SNRIs) prospectively examined the efficacy of antidepressant medication with rTMS. Combining rTMS with SSRIs led to significantly lower depression scores, (SMD [CI] of -0.65 [-0.98, -0.31], p = 0.0002, I2 = 66.1%), higher response (OR = 0.97 [0.50, 1.44], p < 0.0001, I2 = 25.33%) and remission rates (OR = 1.04 [0.55, 1.52], p < 0.0001, I2 = 0.00%) than medication with sham rTMS. No additive benefit was found for SNRIs with rTMS (SMD of 0.10 [-0.14, 0.34], p = 0.42, I2 = 0.00%; OR = 0.12 [-0.39, 0.62], p = 0.64, I2 = 0.00%; OR = -0.31 [-0.90, 0.28], p = 0.86, I2 = 39.9%). The overall risk of bias for the included studies ranged from low to high, with 1 study having a high risk of bias. Interpretation: The combination of rTMS with SSRIs, but not SNRIs, significantly reduced depression severity, increasing response and remission rates. Some analyses demonstrated high heterogeneity, which was influenced by an SSRI trial with a high effect size. Overall, these results suggest that not all antidepressant combination therapies are alike, and SSRIs should be considered when initiating rTMS. Funding: Donald T. Stuss Young Investigator Research Innovation Award from the Sandra Black Centre for Brain Resilience & Recovery and the Harquail Centre for Neuromodulation through the Sunnybrook Foundation.

2.
Biol Psychiatry ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187171

RESUMEN

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) trials targeting the anterior limb of the internal capsule have shown promising results. We evaluate the long-term safety and efficacy of MRgFUS capsulotomy in patients with obsessive-compulsive disorder (OCD) and major depressive disorder (MDD). METHODS: This phase I single center open label study recruited treatment-resistant OCD and MDD. Outcomes were measured 6mo, 12mo, and 18-24months (long-term) after MRgFUS capsulotomy. Neuropsychological testing and neuroimaging were conducted at baseline and 12mo postoperatively. The primary outcome was safety. The secondary outcome was clinical response, defined for OCD as ≥35% improvement in Yale-Brown obsessive-compulsive scale (YBOCS) scores, and for MDD as a ≥50% reduction in the Hamilton Depression Rating Scale (HAMD-17) scores, compared to baseline. RESULTS: No serious adverse effects were registered. In patients with OCD (n=15), baseline YBOCS scores (31.9±1.2) were significantly reduced by 23% (p=0.01) at 6mo and 35% (p<0.0001) at 12mo. In patients with MDD (n=12), a 26% and 25% non-significant reduction in HAMD-17 scores (baseline 24.3±1.2) was observed at 6mo and 12mo, respectively. Neuropsychological testing revealed no negative effects of capsulotomy. In the OCD and MDD cohorts we found a correlation between clinical outcome and lesion laterality, with more medial left (OCD, p=0.08) and more lateral right (MDD, p<0.05) placed lesions being respectively associated with a stronger response. In the MDD cohort, more ventral tracts appeared to be associated with a poorer response. CONCLUSIONS: MRgFUS capsulotomy is safe in patients with OCD and MDD and particularly effective in the former population.

3.
Psychiatry Res ; 340: 116125, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128167

RESUMEN

Intravenous (IV) ketamine and intranasal (IN) esketamine are novel therapies to manage treatment resistant depression within major depressive disorder (MDD-TRD). This is a multi-site observational study aiming to assess the real-world effectiveness and tolerability of these novel therapies in the management of MDD-TRD. 53 patients were referred to receive IV ketamine (n = 26, 69.23 % female, 52.81 ± 14.33 years old) or IN esketamine (n = 27, 51.85 % female, 43.93 ± 13.57 years old). Treatment effectiveness was assessed using the Montgomery and Åsberg Depression Rating Scale (MADRS) for depression severity and item 10 of the MADRS for suicidal ideation (SI). Tolerability was assessed by systematically tracking side effects and depersonalization using the 6-item Clinician administered dissociative symptom scale (CADSS-6). The data was analyzed using descriptive statistics, risk ratio and effect size. Both IV ketamine and IN esketamine significantly reduced depressive symptoms and suicidal ideation by treatment endpoint. Patients receiving IN esketamine, and patients receiving IV ketamine had a similar risk of developing side effects. All side effects reported were mild and transient. These results suggested that both IV ketamine and IN esketamine are effective in the management of depressive symptoms and were well tolerated. Therefore, the results of this study could serve to inform clinical practice.


Asunto(s)
Administración Intranasal , Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Ketamina , Ideación Suicida , Humanos , Ketamina/efectos adversos , Ketamina/administración & dosificación , Ketamina/farmacología , Ketamina/uso terapéutico , Femenino , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Masculino , Adulto , Persona de Mediana Edad , Trastorno Depresivo Mayor/tratamiento farmacológico , Antidepresivos/efectos adversos , Antidepresivos/administración & dosificación , Administración Intravenosa , Anciano , Resultado del Tratamiento
4.
Trials ; 25(1): 441, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956594

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a leading cause of disability worldwide across domains of health and cognition, affecting overall quality of life. Approximately one third of individuals with depression do not fully respond to treatments (e.g., conventional antidepressants, psychotherapy) and alternative strategies are needed. Recent early phase trials suggest psilocybin may be a safe and efficacious intervention with rapid-acting antidepressant properties. Psilocybin is thought to exert therapeutic benefits by altering brain network connectivity and inducing neuroplastic changes that endure for weeks post-treatment. Although early clinical results are encouraging, psilocybin's acute neurobiological effects on neuroplasticity have not been fully investigated. We aim to examine for the first time how psilocybin acutely (intraday) and subacutely (weeks) alters functional brain networks implicated in depression. METHODS: Fifty participants diagnosed with MDD or persistent depressive disorder (PDD) will be recruited from a tertiary mood disorders clinic and undergo 1:1 randomization into either an experimental or control arm. Participants will be given either 25 mg psilocybin or 25 mg microcrystalline cellulose (MCC) placebo for the first treatment. Three weeks later, those in the control arm will transition to receiving 25 mg psilocybin. We will investigate whether treatments are associated with changes in arterial spin labelling and blood oxygenation level-dependent contrast neuroimaging assessments at acute and subacute timepoints. Primary outcomes include testing whether psilocybin demonstrates acute changes in (1) cerebral blood flow and (2) functional brain activity in networks associated with mood regulation and depression when compared to placebo, along with changes in MADRS score over time compared to placebo. Secondary outcomes include changes across complementary clinical psychiatric, cognitive, and functional scales from baseline to final follow-up. Serum peripheral neurotrophic and inflammatory biomarkers will be collected at baseline and follow-up to examine relationships with clinical response, and neuroimaging measures. DISCUSSION: This study will investigate the acute and additive subacute neuroplastic effects of psilocybin on brain networks affected by depression using advanced serial neuroimaging methods. Results will improve our understanding of psilocybin's antidepressant mechanisms versus placebo response and whether biological measures of brain function can provide early predictors of treatment response. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06072898. Registered on 6 October 2023.


Asunto(s)
Afecto , Encéfalo , Trastorno Depresivo Mayor , Psilocibina , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Psilocibina/uso terapéutico , Psilocibina/efectos adversos , Psilocibina/administración & dosificación , Psilocibina/farmacología , Afecto/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Trastorno Depresivo Mayor/tratamiento farmacológico , Imagen por Resonancia Magnética , Factores de Tiempo , Resultado del Tratamiento , Adulto , Plasticidad Neuronal/efectos de los fármacos , Adulto Joven , Masculino , Antidepresivos/uso terapéutico , Femenino , Persona de Mediana Edad
5.
Brain Stimul ; 17(4): 752-759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38901565

RESUMEN

BACKGROUND: Patient expectations, including both positive (placebo) and negative (nocebo) effects, influence treatment outcomes, yet their impact on acute repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant depression (TRD) is unclear. METHODS: In this single-center retrospective chart review, 208 TRD patients completed the Stanford Expectation of Treatment Scale (SETS) before starting open-label rTMS treatment. Patients were offered two excitatory rTMS protocols (deep TMS or intermittent theta-burst stimulation), which stimulated the left dorsolateral prefrontal cortex. A minimum of 20 once daily treatments were provided, delivered over 4-6 weeks. Primary outcomes were 1) remission, measured by a post-treatment score of <8 on the Hamilton Depression Rating Scale (HAMD-17), and 2) premature discontinuation. The change in HAMD-17 scores over time was used as a secondary outcome. Physicians were blinded to SETS scores. Logistic and linear regression, adjusting for covariates, assessed SETS and HAMD-17 relationships. RESULTS: Of 208 patients, 177 had baseline and covariate data available. The mean positivity bias score (positive expectancy minus negative expectancy subscale averages) was 0.48 ± 2.21, indicating the cohort was neutral regarding the expectations of their treatment on average. Higher positive expectancy scores were significantly associated with greater odds of remission (OR = 1.90, p = 0.003) and greater reduction in HAMD-17 scores (ß = 1.30, p = 0.005) at the end of acute treatment, after adjusting for covariates. Negative expectancy was not associated with decreased odds of remission (p = 0.2) or treatment discontinuation (p = 0.8). CONCLUSIONS: Higher pre-treatment positive expectations were associated with greater remission rates with open-label rTMS in a naturalistic cohort of patients with TRD.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Femenino , Trastorno Depresivo Resistente al Tratamiento/terapia , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Adulto , Anciano
6.
Can J Psychiatry ; 69(9): 641-687, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38711351

RESUMEN

BACKGROUND: The Canadian Network for Mood and Anxiety Treatments (CANMAT) last published clinical guidelines for the management of major depressive disorder (MDD) in 2016. Owing to advances in the field, an update was needed to incorporate new evidence and provide new and revised recommendations for the assessment and management of MDD in adults. METHODS: CANMAT convened a guidelines editorial group comprised of academic clinicians and patient partners. A systematic literature review was conducted, focusing on systematic reviews and meta-analyses published since the 2016 guidelines. Recommendations were organized by lines of treatment, which were informed by CANMAT-defined levels of evidence and supplemented by clinical support (consisting of expert consensus on safety, tolerability, and feasibility). Drafts were revised based on review by patient partners, expert peer review, and a defined expert consensus process. RESULTS: The updated guidelines comprise eight primary topics, in a question-and-answer format, that map a patient care journey from assessment to selection of evidence-based treatments, prevention of recurrence, and strategies for inadequate response. The guidelines adopt a personalized care approach that emphasizes shared decision-making that reflects the values, preferences, and treatment history of the patient with MDD. Tables provide new and updated recommendations for psychological, pharmacological, lifestyle, complementary and alternative medicine, digital health, and neuromodulation treatments. Caveats and limitations of the evidence are highlighted. CONCLUSIONS: The CANMAT 2023 updated guidelines provide evidence-informed recommendations for the management of MDD, in a clinician-friendly format. These updated guidelines emphasize a collaborative, personalized, and systematic management approach that will help optimize outcomes for adults with MDD.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Humanos , Canadá , Trastorno Depresivo Mayor/terapia , Guías de Práctica Clínica como Asunto , Revisiones Sistemáticas como Asunto , Metaanálisis como Asunto
7.
Brain Commun ; 6(3): fcae093, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707711

RESUMEN

Deep brain stimulation has revolutionized the treatment of movement disorders and is gaining momentum in the treatment of several other neuropsychiatric disorders. In almost all applications of this therapy, the insertion of electrodes into the target has been shown to induce some degree of clinical improvement prior to stimulation onset. Disregarding this phenomenon, commonly referred to as 'insertional effect', can lead to biased results in clinical trials, as patients receiving sham stimulation may still experience some degree of symptom amelioration. Similar to the clinical scenario, an improvement in behavioural performance following electrode implantation has also been reported in preclinical models. From a neurohistopathologic perspective, the insertion of electrodes into the brain causes an initial trauma and inflammatory response, the activation of astrocytes, a focal release of gliotransmitters, the hyperexcitability of neurons in the vicinity of the implants, as well as neuroplastic and circuitry changes at a distance from the target. Taken together, it would appear that electrode insertion is not an inert process, but rather triggers a cascade of biological processes, and, as such, should be considered alongside the active delivery of stimulation as an active part of the deep brain stimulation therapy.

8.
Neurosurgery ; 95(3): 509-516, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511957

RESUMEN

Deep brain stimulation (DBS) is an emerging therapy for treatment-resistant depression (TRD). Although adverse effects have been reported in early-phase and a few randomized clinical trials, little is known about its overall safety profile, which has been assumed to be similar to that of DBS for movement disorders. The objective of this study was to pool existing safety data on DBS for TRD. Following PRISMA guidelines, PubMed was searched for English articles describing adverse outcomes after DBS for TRD. Studies were included if they reported at least 5 patients with a minimal follow-up of 6 months. After abstract (n = 607) and full-article review (n = 127), 28 articles reporting on 353 patients met criteria for final inclusion. Follow-up of the studies retrieved ranged from 12 to 96 months. Hemorrhages occurred in 0.8% of patients and infections in 10.2%. The rate of completed suicide was 2.5%. Development or worsening of depressive symptoms, anxiety, and mania occurred in 18.4%, 9.1%, and 5.1%, respectively. There were some differences between targets, but between-study heterogeneity precluded statistical comparisons. In conclusion, DBS for TRD is associated with surgical and psychiatric adverse events. Hemorrhage and infection occur at rates within an accepted range for other DBS applications. The risk of suicide after DBS for TRD is 2.5% but may not represent a significant deviation from the natural history of TRD. Finally, risks of worsening depression, anxiety, and the incidence of mania should be acknowledged when considering DBS for TRD.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Depresivo Resistente al Tratamiento , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Humanos , Trastorno Depresivo Resistente al Tratamiento/terapia
10.
Psychiatry Res ; 329: 115525, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820574

RESUMEN

Individuals with major depressive disorder (MDD) may exhibit a seasonal pattern. The impact of a seasonal pattern in depressive symptoms on rTMS outcomes is unexplored. A retrospective analysis was performed on patients with MDD receiving open-label high frequency rTMS to the left dorsolateral prefrontal cortex. Having a seasonal pattern was defined as scoring ≥ 12 on the Personal Inventory for Depression and Seasonal Affective Disorder (PIDS). Primary outcomes included improvement in the Hamilton Depression Rating Scale (HAMD) and remission. Secondary analyses included the use of the self-rated Quick Inventory of Depressive Symptomatology (QIDS) to assess for changes in atypical neurovegetative symptoms. Multiple linear regression, multiple logistic regression, and linear mixed effects analyses were performed. 46 % (58/127) of the sample had a seasonal pattern. Seasonal pattern did not significantly influence improvement in HAMD (PIDS < 12, 7.8, SD 5.9; PIDS ≥ 12, 10.4, SD 4.9 or remission (PIDS < 12, 30 %; PIDS ≥ 12, 34 %). There were equivalent degrees of improvement in atypical neurovegetative symptoms over time as assessed using the QIDS. Depression with seasonal pattern was found to respond to rTMS treatment similarly to depression without seasonal pattern, suggesting that this may be a viable treatment for this group.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Depresión/terapia , Trastorno Depresivo Mayor/psicología , Corteza Prefrontal/fisiología , Estudios Retrospectivos , Estaciones del Año , Estimulación Magnética Transcraneal , Resultado del Tratamiento
12.
Brain Stimul ; 16(5): 1259-1272, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37611657

RESUMEN

BACKGROUND: Deep brain stimulation of the subcallosal cingulate area (SCC-DBS) is a promising neuromodulatory therapy for treatment-resistant depression (TRD). Biomarkers of optimal target engagement are needed to guide surgical targeting and stimulation parameter selection and to reduce variance in clinical outcome. OBJECTIVE/HYPOTHESIS: We aimed to characterize the relationship between stimulation location, white matter tract engagement, and clinical outcome in a large (n = 60) TRD cohort treated with SCC-DBS. A smaller cohort (n = 22) of SCC-DBS patients with differing primary indications (bipolar disorder/anorexia nervosa) was utilized as an out-of-sample validation cohort. METHODS: Volumes of tissue activated (VTAs) were constructed in standard space using high-resolution structural MRI and individual stimulation parameters. VTA-based probabilistic stimulation maps (PSMs) were generated to elucidate voxelwise spatial patterns of efficacious stimulation. A whole-brain tractogram derived from Human Connectome Project diffusion-weighted MRI data was seeded with VTA pairs, and white matter streamlines whose overlap with VTAs related to outcome ('discriminative' streamlines; Puncorrected < 0.05) were identified using t-tests. Linear modelling was used to interrogate the potential clinical relevance of VTA overlap with specific structures. RESULTS: PSMs varied by hemisphere: high-value left-sided voxels were located more anterosuperiorly and squarely in the lateral white matter, while the equivalent right-sided voxels fell more posteroinferiorly and involved a greater proportion of grey matter. Positive discriminative streamlines localized to the bilateral (but primarily left) cingulum bundle, forceps minor/rostrum of corpus callosum, and bilateral uncinate fasciculus. Conversely, negative discriminative streamlines mostly belonged to the right cingulum bundle and bilateral uncinate fasciculus. The best performing linear model, which utilized information about VTA volume overlap with each of the positive discriminative streamline bundles as well as the negative discriminative elements of the right cingulum bundle, explained significant variance in clinical improvement in the primary TRD cohort (R = 0.46, P < 0.001) and survived repeated 10-fold cross-validation (R = 0.50, P = 0.040). This model was also able to predict outcome in the out-of-sample validation cohort (R = 0.43, P = 0.047). CONCLUSION(S): These findings reinforce prior indications of the importance of white matter engagement to SCC-DBS treatment success while providing new insights that could inform surgical targeting and stimulation parameter selection decisions.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Depresivo Resistente al Tratamiento , Sustancia Blanca , Humanos , Imagen de Difusión Tensora , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Cuerpo Calloso , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Trastorno Depresivo Resistente al Tratamiento/terapia
13.
Neurobiol Dis ; 183: 106179, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37276987

RESUMEN

BACKGROUND: Aggressive behaviour (AB) may occur in patients with different neuropsychiatric disorders. Although most patients respond to conventional treatments, a small percentage continue to experience AB despite optimized pharmacological management and are considered to be treatment-refractory. For these patients, hypothalamic deep brain stimulation (pHyp-DBS) has been investigated. The hypothalamus is a key structure in the neurocircuitry of AB. An imbalance between serotonin (5-HT) and steroid hormones seems to exacerbate AB. OBJECTIVES: To test whether pHyp-DBS reduces aggressive behaviour in mice through mechanisms involving testosterone and 5-HT. METHODS: Male mice were housed with females for two weeks. These resident animals become territorial and aggressive towards intruder mice placed in their cages. Residents had electrodes implanted in the pHyp. DBS was administered for 5 h/day for 8 consecutive encounters prior to the interaction with the intruder. After testing, blood and brains were recovered for measuring testosterone and 5-HT receptor density, respectively. In a second experiment, residents received WAY-100635 (5-HT1A antagonist) or saline injections prior to pHyp-DBS. After the first 4 encounters, the injection allocation was crossed, and animals received the alternative treatment during the next 4 encounters. RESULTS: DBS-treated mice showed reduced AB that was correlated with testosterone levels and an increase in 5-HT1A receptor density in the orbitofrontal cortex and amygdala. Pre-treatment with WAY-100635 blocked the anti-aggressive effect of pHyp-DBS. CONCLUSIONS: This study shows that pHyp-DBS reduces AB in mice via changes in testosterone and 5-HT1A mechanisms.


Asunto(s)
Estimulación Encefálica Profunda , Serotonina , Femenino , Masculino , Ratones , Animales , Testosterona , Encéfalo , Hipotálamo
15.
Can J Neurol Sci ; 50(s1): s10-s16, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37160678

RESUMEN

The last two decades have seen dramatic growth in the application of procedurally based interventions for treating refractory psychiatric conditions, leading to interest in developing the foundations for the subspecialty of "Interventional Psychiatry." However, there is cause for concern that the rate of expansion of clinical advances in this field may be outpacing the ability of postgraduate curricula to provide sufficient exposure to and teaching and supervision of these treatments. The paucity of adequately trained practitioners in Interventional Psychiatry further exacerbates inequities in the ability of eligible patients to access and benefit from these approaches. This paper explores the rates of utilization of Interventional Psychiatry treatments, the current state of education in these treatments, and the role that training can play in translating scientific advances in this area to ensure equitable access and maximum impact at a population level. The majority of the discussion is centered on electroconvulsive therapy (ECT), the most established and available of these treatments, highlighting how enhancing education and training in ECT can reduce barriers to its utilization. It is argued that innovations in pedagogical approaches for disseminating the learning of these procedures are needed to increase the current low rates of competency in these treatments and can facilitate the more rapid dissemination of other Interventional Psychiatry approaches and neurotechnologies, such as repetitive transcranial magnetic stimulation, ketamine, deep brain stimulation, and focused ultrasound.


Asunto(s)
Ketamina , Trastornos Mentales , Psiquiatría , Humanos , Curriculum , Trastornos Mentales/terapia , Estimulación Magnética Transcraneal
16.
Elife ; 122023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37212456

RESUMEN

Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas - together with patient age - were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.


Asunto(s)
Estimulación Encefálica Profunda , Niño , Humanos , Estimulación Encefálica Profunda/métodos , Encéfalo , Agresión/psicología , Hipotálamo Posterior/fisiología , Resultado del Tratamiento , Imagen por Resonancia Magnética
18.
Can J Psychiatry ; 68(12): 916-924, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36959745

RESUMEN

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is recommended in Canadian guidelines as a first-line treatment for major depressive disorder. With the shift towards competency-based medical education, it remains unclear how to determine when a resident is considered competent in applying knowledge of rTMS to patient care. Given inconsistencies between postgraduate training programmes with regards to training requirements, defining competencies will improve the standard of care in rTMS delivery. OBJECTIVE: The goal of this study was to develop competencies for rTMS that can be implemented into a competency-based training curriculum in postgraduate training programmes. METHODS: A working group drafted competencies for postgraduate psychiatry trainees. Fourteen rTMS experts from across Canada were invited to participate in the modified Delphi process. RESULTS: Ten experts participated in all three rounds of the modified Delphi process. A total of 20 items reached a consensus. There was improvement in the Cronbach's alpha over the rounds of modified Delphi process (Cronbach's alpha increased from 0.554 to 0.824) suggesting improvement in internal consistency. The intraclass correlation coefficient (ICC) increased from 0.543 to 0.805 suggesting improved interrater agreement. CONCLUSIONS: This modified Delphi process resulted in expert consensus on competencies to be acquired during postgraduate medical education programmes where a learner is training to become competent as a consultant and/or practitioner in rTMS treatment. This is a field that still requires development, and it is expected that as more evidence emerges the competencies will be further refined. These results will help the development of other curricula in interventional psychiatry.


Asunto(s)
Trastorno Depresivo Mayor , Educación Médica , Humanos , Consenso , Estimulación Magnética Transcraneal , Canadá , Competencia Clínica , Curriculum
19.
Eur Neuropsychopharmacol ; 68: 11-26, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36640729

RESUMEN

Deep brain stimulation (DBS) has emerged as a neuromodulation therapy for treatment-resistant depression, but its actual efficacy and mechanisms of action are still unclear. Changes in neurochemical transmission are important mechanisms of antidepressant therapies. Here, we review the preclinical DBS literature reporting behavioural and neurochemical data associated with its antidepressant-like effects. The most commonly studied target in preclinical models was the ventromedial prefrontal cortex (vmPFC). In rodents, DBS delivered to this target induced serotonin (5-HT) release and increased 5-HT1B receptor expression. The antidepressant-like effects of vmPFC DBS seemed to be independent of the serotonin transporter and potentially mediated by the direct modulation of prefrontal projections to the raphe. Adenosinergic and glutamatergic transmission might have also play a role. Medial forebrain bundle (MFB) DBS increased dopamine levels and reduced D2 receptor expression, whereas nucleus accumbens (NAcc), and lateral habenula (LHb) stimulation increased catecholamine levels in different brain regions. In rodents, subthalamic nucleus (STN) DBS induced robust depression-like responses associated with a reduction in serotonergic transmission, as revealed by a decrease in serotonin release. Some of these effects seemed to be mediated by 5HT1A receptors. In conclusion, the antidepressant-like effects of DBS in preclinical models have been well documented in multiple targets. Though variable mechanisms have been proposed, DBS-induced acute and long-term changes in neurochemical substrates seem to play an important role in the antidepressant-like effects of this therapy.


Asunto(s)
Estimulación Encefálica Profunda , Depresión , Animales , Depresión/terapia , Depresión/metabolismo , Serotonina/metabolismo , Antidepresivos/uso terapéutico , Modelos Animales
20.
J Affect Disord ; 320: 716-724, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206889

RESUMEN

BACKGROUND: History of adverse childhood experiences (ACEs) is associated with poorer treatment outcomes in depression. How ACEs affect outcomes from repetitive transcranial magnetic stimulation (rTMS) is not well-defined. The primary aim was to investigate whether ACEs affect depression outcomes in patients receiving high frequency rTMS, either deep TMS (dTMS) or intermittent theta burst stimulation (iTBS), to the left dorsolateral prefrontal cortex. METHODS: The Hamilton Depression Rating Scale (HAMD-17) was collected at baseline and every 2 weeks for 4-6 weeks. Outcomes included improvement in HAMD-17 and remission. The ACE-10 questionnaire was used to quantify categories of ACEs. Data from 99 patients with MDD receiving an acute rTMS course were analyzed. RESULTS: Patients had a mean of 2.4 ACEs (SD 2.5). No significant differences in outcomes were found between dTMS or iTBS so these data were pooled. Using a continuous ACE variable showed no significant impact on outcomes. Using a categorical ACE variable (0, 1, 2, 3, 4 or more) did not reveal significant effects of ACEs on outcomes. Higher ACE was associated with steeper decrease in HAMD-17 only from baseline to week 2 but not at other times. LIMITATIONS: This was an open-label study. The well-validated ACE questionnaire does not measure severity or frequency of adversities. CONCLUSIONS: Patients with depression receiving rTMS reported on average 2.4 ACEs. ACE scores may lead to a steeper early decline in HAMD-17 but did not otherwise impact depression outcomes. Presence of high levels of ACEs should not preclude consideration of rTMS for depression.


Asunto(s)
Experiencias Adversas de la Infancia , Trastorno Depresivo Mayor , Humanos , Estimulación Magnética Transcraneal , Trastorno Depresivo Mayor/terapia , Depresión/terapia , Corteza Prefrontal/fisiología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...