Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(15): 15189-15198, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37493644

RESUMEN

The Chirality Induced Spin Selectivity (CISS) effect describes the capability of chiral molecules to act as spin filters discriminating flowing electrons according to their spin state. Within molecular spintronics, efforts are focused on developing chiral-molecule-based technologies to control the injection and coherence of spin-polarized currents. Herein, for this purpose, we study spin selectivity properties of a monolayer of a thioalkyl derivative of a thia-bridged triarylamine hetero[4]helicene chemisorbed on a gold surface. A stacked device assembled by embedding a monolayer of these molecules between ferromagnetic and diamagnetic electrodes exhibits asymmetric magnetoresistance with inversion of the signal according to the handedness of molecules, in line with the presence of the CISS effect. In addition, magnetically conductive atomic force microscopy reveals efficient electron spin filtering even at unusually low potentials. Our results demonstrate that thia[4]heterohelicenes represent key candidates for the development of chiral spintronic devices.

2.
Chem Sci ; 13(41): 12208-12218, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36349110

RESUMEN

It is well assessed that the charge transport through a chiral potential barrier can result in spin-polarized charges. The possibility of driving this process through visible photons holds tremendous potential for several aspects of quantum information science, e.g., the optical control and readout of qubits. In this context, the direct observation of this phenomenon via spin-sensitive spectroscopies is of utmost importance to establish future guidelines to control photo-driven spin selectivity in chiral structures. Here, we provide direct proof that time-resolved electron paramagnetic resonance (EPR) can be used to detect long-lived spin polarization generated by photoinduced charge transfer through a chiral bridge. We propose a system comprising CdSe quantum dots (QDs), as a donor, and C60, as an acceptor, covalently linked through a saturated oligopeptide helical bridge (χ) with a rigid structure of ∼10 Å. Time-resolved EPR spectroscopy shows that the charge transfer in our system results in a C60 radical anion, whose spin polarization maximum is observed at longer times with respect to that of the photogenerated C60 triplet state. Notably, the theoretical modelling of the EPR spectra reveals that the observed features may be compatible with chirality-induced spin selectivity, but the electronic features of the QD do not allow the unambiguous identification of the CISS effect. Nevertheless, we identify which parameters need optimization for unambiguous detection and quantification of the phenomenon. This work lays the basis for the optical generation and direct manipulation of spin polarization induced by chirality.

3.
Nat Commun ; 13(1): 3838, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788608

RESUMEN

Superconductors and magnetic materials, including molecules, are key ingredients for quantum computing and spintronics. However, only a little is known about how these materials interact in multilayer nanostructures like the hybrid architectures nowadays under development for such advanced applications. Here, we show that a single layer of magnetic molecules, Terbium(III) bis-phthalocyaninato (TbPc2) complexes, deposited under controlled UHV conditions on a superconducting Pb(111) surface is sensitive to the topology of the intermediate state of the superconductor, namely to the presence and evolution of superconducting and normal domains due to screening and penetration of an external magnetic field. The topological hysteresis of the superconducting substrate imprints a local evolution of the magnetisation of the TbPc2 molecules in the monolayer. Element and surface selective detection is achieved by recording the X-ray magnetic circular dichroism of the Tb atoms. This study reveals the impressive potential of magnetic molecules for sensing local magnetic field variations in molecular/superconductor hybrid devices, including spin resonators or spin injecting and spin filtering components for spintronics applications.

4.
Angew Chem Int Ed Engl ; 60(28): 15276-15280, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33904633

RESUMEN

In the past few years, the chirality and magnetism of molecules have received notable interest for the development of novel molecular devices. Chiral helicenes combine both these properties, and thus their nanostructuration is the first step toward developing new multifunctional devices. Here, we present a novel strategy to deposit a sub-monolayer of enantiopure thia[4]helicene radical cations on a pre-functionalized Au(111) substrate. This approach results in both the paramagnetic character and the chemical structure of these molecules being maintained at the nanoscale, as demonstrated by in-house characterizations. Furthermore, synchrotron-based X-ray natural circular dichroism confirmed that the handedness of the thia[4]helicene is preserved on the surface.

5.
ACS Appl Mater Interfaces ; 12(28): 31696-31705, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32551478

RESUMEN

Spin crossover complexes are among the most studied classes of molecular switches and have attracted considerable attention for their potential technological use as active units in multifunctional devices. A fundamental step toward their practical implementation is the integration in macroscopic devices adopting hybrid vertical architectures. First, the physical properties of technological interest shown by these materials in the bulk phase have to be retained once they are deposited on a solid surface. Herein, we describe the study of a hybrid molecular inorganic junction embedding the spin crossover complex [Fe(qnal)2] (qnal = quinoline-naphthaldehyde) as an active switchable thin film sandwiched within energy-optimized metallic electrodes. In these junctions, developed and characterized with the support of state of the art techniques including synchrotron Mössbauer source (SMS) spectroscopy and focused-ion beam scanning transmission electron microscopy, we observed that the spin state conversion of the Fe(II)-based spin crossover film is associated with a transition from a space charge-limited current (SCLC) transport mechanism with shallow traps to a SCLC mechanism characterized by the presence of an exponential distribution of traps concomitant with the spin transition temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA