Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Sci Data ; 10(1): 787, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945571

RESUMEN

Birds in seasonal habitats rely on intricate strategies for optimal timing of migrations. This is governed by environmental cues, including photoperiod. Genetic factors affecting intrinsic timekeeping mechanisms, such as circadian clock genes, have been explored, yielding inconsistent findings with potential lineage-dependency. To clarify this evidence, a systematic review and phylogenetic reanalysis was done. This descriptor outlines the methodology for sourcing, screening, and processing relevant literature and data. PRISMA guidelines were followed, ultimately including 66 studies, with 34 focusing on candidate genes at the genotype-phenotype interface. Studies were clustered using bibliographic coupling and citation network analysis, alongside scientometric analyses by publication year and location. Data was retrieved for allele data from databases, article supplements, and direct author communications. The dataset, version 1.0.2, encompasses data from 52 species, with 46 species for the Clock gene and 43 for the Adcyap1 gene. This dataset, featuring data from over 8000 birds, constitutes the most extensive cross-species collection for these candidate genes, used in studies investigating gene polymorphisms and seasonal bird migration.


Asunto(s)
Migración Animal , Proteínas Aviares , Aves , Alelos , Ritmo Circadiano/genética , Fotoperiodo , Filogenia , Polimorfismo Genético , Revisiones Sistemáticas como Asunto , Animales , Proteínas Aviares/genética , Migración Animal/fisiología
3.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37590950

RESUMEN

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.


Asunto(s)
Charadriiformes , Animales , Charadriiformes/genética , Ecosistema , Reordenamiento Génico , Genómica , Cromosomas/genética
4.
Biol Rev Camb Philos Soc ; 98(4): 1051-1080, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36879518

RESUMEN

Timing is a crucial aspect for survival and reproduction in seasonal environments leading to carefully scheduled annual programs of migration in many species. But what are the exact mechanisms through which birds (class: Aves) can keep track of time, anticipate seasonal changes, and adapt their behaviour? One proposed mechanism regulating annual behaviour is the circadian clock, controlled by a highly conserved set of genes, collectively called 'clock genes' which are well established in controlling the daily rhythmicity of physiology and behaviour. Due to diverse migration patterns observed within and among species, in a seemingly endogenously programmed manner, the field of migration genetics has sought and tested several candidate genes within the clock circuitry that may underlie the observed differences in breeding and migration behaviour. Among others, length polymorphisms within genes such as Clock and Adcyap1 have been hypothesised to play a putative role, although association and fitness studies in various species have yielded mixed results. To contextualise the existing body of data, here we conducted a systematic review of all published studies relating polymorphisms in clock genes to seasonality in a phylogenetically and taxonomically informed manner. This was complemented by a standardised comparative re-analysis of candidate gene polymorphisms of 76 bird species, of which 58 are migrants and 18 are residents, along with population genetics analyses for 40 species with available allele data. We tested genetic diversity estimates, used Mantel tests for spatial genetic analyses, and evaluated relationships between candidate gene allele length and population averages for geographic range (breeding- and non-breeding latitude), migration distance, timing of migration, taxonomic relationships, and divergence times. Our combined analysis provided evidence (i) of a putative association between Clock gene variation and autumn migration as well as a putative association between Adcyap1 gene variation and spring migration in migratory species; (ii) that these candidate genes are not diagnostic markers to distinguish migratory from sedentary birds; and (iii) of correlated variability in both genes with divergence time, potentially reflecting ancestrally inherited genotypes rather than contemporary changes driven by selection. These findings highlight a tentative association between these candidate genes and migration attributes as well as genetic constraints on evolutionary adaptation.


Asunto(s)
Migración Animal , Aves , Animales , Migración Animal/fisiología , Aves/genética , Polimorfismo Genético , Genotipo , Evolución Biológica , Estaciones del Año
5.
Proc Natl Acad Sci U S A ; 120(14): e2205774119, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972461

RESUMEN

In the smallholder, low-input farming systems widespread in sub-Saharan Africa, farmers select and propagate crop varieties based on their traditional knowledge and experience. A data-driven integration of their knowledge into breeding pipelines may support the sustainable intensification of local farming. Here, we combine genomics with participatory research to tap into traditional knowledge in smallholder farming systems, using durum wheat (Triticum durum Desf.) in Ethiopia as a case study. We developed and genotyped a large multiparental population, called the Ethiopian NAM (EtNAM), that recombines an elite international breeding line with Ethiopian traditional varieties maintained by local farmers. A total of 1,200 EtNAM lines were evaluated for agronomic performance and farmers' appreciation in three locations in Ethiopia, finding that women and men farmers could skillfully identify the worth of wheat genotypes and their potential for local adaptation. We then trained a genomic selection (GS) model using farmer appreciation scores and found that its prediction accuracy over grain yield (GY) was higher than that of a benchmark GS model trained on GY. Finally, we used forward genetics approaches to identify marker-trait associations for agronomic traits and farmer appreciation scores. We produced genetic maps for individual EtNAM families and used them to support the characterization of genomic loci of breeding relevance with pleiotropic effects on phenology, yield, and farmer preference. Our data show that farmers' traditional knowledge can be integrated in genomics-driven breeding to support the selection of best allelic combinations for local adaptation.


Asunto(s)
Agricultores , Triticum , Femenino , Humanos , Triticum/genética , Fitomejoramiento , Fenotipo , Grano Comestible , Genómica
6.
Cell Rep ; 42(1): 111992, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36662619

RESUMEN

Insights into the evolution of non-model organisms are limited by the lack of reference genomes of high accuracy, completeness, and contiguity. Here, we present a chromosome-level, karyotype-validated reference genome and pangenome for the barn swallow (Hirundo rustica). We complement these resources with a reference-free multialignment of the reference genome with other bird genomes and with the most comprehensive catalog of genetic markers for the barn swallow. We identify potentially conserved and accelerated genes using the multialignment and estimate genome-wide linkage disequilibrium using the catalog. We use the pangenome to infer core and accessory genes and to detect variants using it as a reference. Overall, these resources will foster population genomics studies in the barn swallow, enable detection of candidate genes in comparative genomics studies, and help reduce bias toward a single reference genome.


Asunto(s)
Golondrinas , Animales , Golondrinas/genética , Metagenómica , Genoma/genética , Genómica , Cromosomas
7.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35617136

RESUMEN

The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51 kya, into the Americas, from where a relatively recent (<20 kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7 kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife.


Asunto(s)
Genoma Mitocondrial , Golondrinas , África , Animales , Asia , Femenino , Humanos , Filogeografía , Golondrinas/genética
8.
Insects ; 11(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322607

RESUMEN

Despite the rising interest in biotic interactions in mountain ecosystems, little is known about high-altitude flower-visiting arthropods. In particular, since the research in these environment can be limited or undermined by harsh conditions and logistical difficulties, it is mandatory to develop effective approaches that maximize possibilities to gather high-quality data. Here we compared two different methods, manual sampling and video observations, to investigate the interactions between the high-mountain arthropod community and flowers of Androsace brevis (Primulaceae), a vulnerable endemic alpine species with a short flowering period occurring in early season. We manually sampled flower-visiting arthropods according to the timed-observations method and recorded their activity on video. We assessed differences and effectiveness of the two approaches to estimate flower-visiting arthropod diversity and to identify potential taxa involved in A. brevis pollination. Both methods proved to be effective and comparable in describing the diversity of flower visitors at a high taxonomic level. However, with manual sampling we were able to obtain a fine taxonomic resolution for sampled arthropods and to evaluate which taxa actually carry A. brevis pollen, while video observations were less invasive and allowed us to assess arthropod behavior and to spot rare taxa. By combining the data obtained with these two approaches we could accurately identify flower-visiting arthropods, characterize their behavior, and hypothesize a role of Hymenoptera Apoidea and Diptera Brachycera in A. brevis pollination. Therefore, we propose integrating the two approaches as a powerful instrument to unravel interactions between flowering plants and associated fauna that can provide crucial information for the conservation of vulnerable environments such as high-mountain ecosystems.

9.
Artículo en Inglés | MEDLINE | ID: mdl-31890139

RESUMEN

Genomes represent the starting point of genetic studies. Since the discovery of DNA structure, scientists have devoted great efforts to determine their sequence in an exact way. In this review we provide a comprehensive historical background of the improvements in DNA sequencing technologies that have accompanied the major milestones in genome sequencing and assembly, ranging from early sequencing methods to Next-Generation Sequencing platforms. We then focus on the advantages and challenges of the current technologies and approaches, collectively known as Third Generation Sequencing. As these technical advancements have been accompanied by progress in analytical methods, we also review the bioinformatic tools currently employed in de novo genome assembly, as well as some applications of Third Generation Sequencing technologies and high-quality reference genomes.

10.
Sci Rep ; 9(1): 6505, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019206

RESUMEN

Regulation of gene expression can occur via epigenetic effects as mediated by DNA methylation. The potential for epigenetic effects to be transmitted across generations, thus modulating phenotypic variation and affecting ecological and evolutionary processes, is increasingly appreciated. However, the study of variation in epigenomes and inter-generational transmission of epigenetic alterations in wild populations is at its very infancy. We studied sex- and age-related variation in DNA methylation and parent-offspring resemblance in methylation profiles in the barn swallows. We focused on a class of highly conserved 'clock' genes (clock, cry1, per2, per3, timeless) relevant in the timing of activities of major ecological importance. In addition, we considerably expanded previous analyses on the relationship between methylation at clock genes and breeding date, a key fitness trait in barn swallows. We found positive assortative mating for methylation at one clock locus. Methylation varied between the nestling and the adult stage, and according to sex. Individuals with relatively high methylation as nestlings also had high methylation levels when adults. Extensive parent-nestling resemblance in methylation levels was observed. Occurrence of extra-pair fertilizations allowed to disclose evidence hinting at a prevalence of paternal germline or sperm quality effects over common environment effects in generating father-offspring resemblance in methylation. Finally, we found an association between methylation at the clock poly-Q region, but not at other loci, and breeding date. We thus provided evidence for sex-dependent variation and the first account of parent-offspring resemblance in methylation in any wild vertebrate. We also showed that epigenetics may influence phenotypic plasticity of timing of life cycle events, thus having a major impact on fitness.


Asunto(s)
Proteínas Aviares/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Metilación de ADN , Epigénesis Genética/genética , Migración Animal , Animales , Femenino , Expresión Génica , Patrón de Herencia , Masculino , Comportamiento de Nidificación , Reproducción/genética
11.
PLoS Genet ; 15(3): e1007998, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30835731

RESUMEN

Genome sequencing data have recently demonstrated that eukaryote evolution has been remarkably influenced by the acquisition of a large number of genes by horizontal gene transfer (HGT) across different kingdoms. However, in depth-studies on the physiological traits conferred by these accidental DNA acquisitions are largely lacking. Here we elucidate the functional role of Sl gasmin, a gene of a symbiotic virus of a parasitic wasp that has been transferred to an ancestor of the moth species Spodoptera littoralis and domesticated. This gene is highly expressed in circulating immune cells (haemocytes) of larval stages, where its transcription is rapidly boosted by injection of microorganisms into the body cavity. RNAi silencing of Sl gasmin generates a phenotype characterized by a precocious suppression of phagocytic activity by haemocytes, which is rescued when these immune cells are incubated in plasma samples of control larvae, containing high levels of the encoded protein. Proteomic analysis demonstrates that the protein Sl gasmin is released by haemocytes into the haemolymph, where it opsonizes the invading bacteria to promote their phagocytosis, both in vitro and in vivo. Our results show that important physiological traits do not necessarily originate from evolution of pre-existing genes, but can be acquired by HGT events, through unique pathways of symbiotic evolution. These findings indicate that insects can paradoxically acquire selective advantages with the help of their natural enemies.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal/genética , Larva/inmunología , Avispas/inmunología , Animales , Hemolinfa/inmunología , Hemolinfa/virología , Larva/genética , Larva/virología , Filogenia , Proteómica , Simbiosis/genética , Simbiosis/inmunología , Avispas/genética , Avispas/virología
12.
Gigascience ; 8(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496513

RESUMEN

Background: The barn swallow (Hirundo rustica) is a migratory bird that has been the focus of a large number of ecological, behavioral, and genetic studies. To facilitate further population genetics and genomic studies, we present a reference genome assembly for the European subspecies (H. r. rustica). Findings: As part of the Genome10K effort on generating high-quality vertebrate genomes (Vertebrate Genomes Project), we have assembled a highly contiguous genome assembly using single molecule real-time (SMRT) DNA sequencing and several Bionano optical map technologies. We compared and integrated optical maps derived from both the Nick, Label, Repair, and Stain technology and from the Direct Label and Stain (DLS) technology. As proposed by Bionano, DLS more than doubled the scaffold N50 with respect to the nickase. The dual enzyme hybrid scaffold led to a further marginal increase in scaffold N50 and an overall increase of confidence in the scaffolds. After removal of haplotigs, the final assembly is approximately 1.21 Gbp in size, with a scaffold N50 value of more than 25.95 Mbp. Conclusions: This high-quality genome assembly represents a valuable resource for future studies of population genetics and genomics in the barn swallow and for studies concerning the evolution of avian genomes. It also represents one of the very first genomes assembled by combining SMRT long-read sequencing with the new Bionano DLS technology for scaffolding. The quality of this assembly demonstrates the potential of this methodology to substantially increase the contiguity of genome assemblies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Golondrinas/genética , Animales , Mapeo Cromosómico , Tamaño del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Masculino , Análisis de Secuencia de ADN/veterinaria
13.
Evolution ; 71(10): 2457-2468, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28722759

RESUMEN

Natural and sexual selection arise when individual fitness varies according to focal traits. Extra-pair paternities (EPPs) can affect the intensity of selection by influencing variance in fitness among individuals. Studies of selection require that individual fitness is estimated using proxies of lifetime reproductive success (LRS). However, estimating LRS is difficult in large, open populations where EPPs cause reallocation of biological paternity. Here, we used extensive field sampling to estimate LRS in a population of barn swallows (Hirundo rustica) to estimate selection on lifespan and ornamental traits of males. We found selection on lifespan mediated both by within- and extra-pair fertilization success and selection on tail length mediated by within- but not extra-pair fertilization success. In addition, we found selection on tail white spots via extra-pair fertilization success after controlling for selection on other traits. These results were not confounded by factors that hamper studies of LRS, including nonexhaustive sampling of offspring and biased sampling of males. Hence, natural and sexual selection mediated by LRS operates on lifespan, tail length, and size of the tail white spots in barn swallows.


Asunto(s)
Fertilización , Longevidad , Selección Genética , Golondrinas/genética , Animales , Plumas/anatomía & histología , Femenino , Masculino , Preferencia en el Apareamiento Animal , Golondrinas/crecimiento & desarrollo , Golondrinas/fisiología , Cola (estructura animal)/anatomía & histología
14.
Sci Rep ; 7: 45412, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28361883

RESUMEN

Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5'-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change.


Asunto(s)
Migración Animal , Proteínas CLOCK/genética , Epigénesis Genética , Fenotipo , Conducta Sexual Animal , Golondrinas/genética , Golondrinas/fisiología , Animales , Metilación de ADN
15.
Curr Zool ; 63(5): 479-486, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29492007

RESUMEN

The timing of major life-history events, such as migration and moult, is set by endogenous circadian and circannual clocks, that have been well characterized at the molecular level. Conversely, the genetic sources of variation in phenology and in other behavioral traits have been sparsely addressed. It has been proposed that inter-individual variability in the timing of seasonal events may arise from allelic polymorphism at phenological candidate genes involved in the signaling cascade of the endogenous clocks. In this study of a long-distance migratory passerine bird, the willow warbler Phylloscopus trochilus, we investigated whether allelic variation at 5 polymorphic loci of 4 candidate genes (Adcyap1, Clock, Creb1, and Npas2), predicted 2 major components of the annual schedule, namely timing of spring migration across the central Mediterranean sea and moult speed, the latter gauged from ptilochronological analyses of tail feathers moulted in the African winter quarters. We identified a novel Clock gene locus (Clock region 3) showing polyQ polymorphism, which was however not significantly associated with any phenotypic trait. Npas2 allele size predicted male (but not female) spring migration date, with males bearing longer alleles migrating significantly earlier than those bearing shorter alleles. Creb1 allele size significantly predicted male (but not female) moult speed, longer alleles being associated with faster moult. All other genotype-phenotype associations were statistically non-significant. These findings provide new evidence for a role of candidate genes in modulating the phenology of different circannual activities in long-distance migratory birds, and for the occurrence of sex-specific candidate gene effects.

16.
Environ Pollut ; 220(Pt A): 29-37, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27712846

RESUMEN

The consequences of exposure to particulate matter (PM) have been thoroughly investigated in humans and other model species, but there is a dearth of studies of the effects of PM on physiology and life-history traits of non-human organisms living in natural or semi-natural environments. Besides toxicological relevance, PM has been recently suggested to exert epigenetic effects by altering DNA methylation patterns. Here, we investigated for the first time the association between the exposure to free-air PM10 and DNA methylation at two loci ('poly-Q exon' and '5'-UTR') of the Clock gene in blood cells of the nestlings of a synanthropic passerine bird, the barn swallow (Hirundo rustica). The Clock gene is a phylogenetically highly conserved gene playing a major role in governing circadian rhythms and circannual life cycles of animals, implying that change in its level of methylation can impact on important fitness traits. We found that methylation at both loci significantly increased with PM10 levels recorded few days before blood sampling, and also with PM10 exposure experienced by the mother during or shortly before egg laying. This study is the first where methylation at a functionally important gene has been shown to vary according to the concentration of anthropogenic pollutants in any animal species in the wild. Since early-life environmental conditions produce epigenetic effects that can transgenerationally be transmitted, DNA methylation of genes controlling photoperiodic response can have far reaching consequences for the ecology and the evolution of wild animal populations.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Relojes Circadianos/genética , Metilación de ADN , Material Particulado/toxicidad , Golondrinas/fisiología , Contaminantes Atmosféricos/análisis , Animales , Ritmo Circadiano/efectos de los fármacos , Femenino , Humanos , Masculino , Exposición Materna , Material Particulado/análisis , Factores de Tiempo
17.
Hortic Res ; 3: 16057, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917289

RESUMEN

Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.

18.
Mol Ecol ; 25(24): 6077-6091, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27862517

RESUMEN

Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate 'circadian clock' genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans-Saharan migratory bird species, we investigated the relationships between species-level genetic variation at two candidate genes, Clock and Adcyap1, and species' traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in 'circadian clock' genotype frequencies, Clock allele size increased with breeding latitude across species. However, early- and late-migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long-distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long-distance migratory species, likely resulting from the time constraints imposed by late spring migration.


Asunto(s)
Migración Animal , Aves/genética , Proteínas CLOCK/genética , Adaptación Fisiológica/genética , África del Norte , Alelos , Animales , Aves/fisiología , Frecuencia de los Genes , Mar Mediterráneo , Filogenia , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Estaciones del Año , Selección Genética
19.
Ecol Evol ; 6(10): 3226-39, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27252831

RESUMEN

Understanding the genetic background of complex behavioral traits, showing multigenic control and extensive environmental effects, is a challenging task. Among such traits, migration is known to show a large additive genetic component. Yet, the identification of specific genes or gene regions explaining phenotypic variance in migratory behavior has received less attention. Migration ultimately depends on seasonal cycles, and polymorphism at phenological candidate genes may underlie variation in timing of migration or other aspects of migratory behavior. In this study of a Nearctic-Neotropical migratory songbird, the Wilson's warbler (Cardellina pusilla), we investigated the association between polymorphism at two phenological candidate genes, Clock and Adcyap1, and two aspects of the migratory phenotype, timing of spring migration through a stopover site and inferred latitude of the breeding destination. The breeding destination of migrating individuals was identified using feather deuterium ratio (δ (2)H), which reliably reflects breeding latitude throughout the species' western breeding range. Ninety-eight percent of the individuals were homozygous at Clock, and the rare heterozygotes did not deviate from homozygous migration phenology. Adcyap1 was highly polymorphic, and allele size was not significantly associated with migration date. However, Adcyap1 allele size significantly positively predicted the inferred breeding latitude of males but not of females. Moreover, we found a strong positive association between inferred breeding latitude and Adcyap1 allele size in long-distance migrating birds from the northern sector of the breeding range (western Canada), while this was not the case in short-distance migrating birds from the southern sector of the breeding range (coastal California). Our findings support previous evidence for a role of Adcyap1 in shaping the avian migratory phenotype, while highlighting that patterns of phenological candidate gene-phenotype associations may be complex, significantly varying between geographically distinct populations and even between the sexes.

20.
Sci Rep ; 5: 12443, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26197782

RESUMEN

Circannual rhythms often rely on endogenous seasonal photoperiodic timers involving 'clock' genes, and Clock gene polymorphism has been associated to variation in phenology in some bird species. In the long-distance migratory barn swallow Hirundo rustica, individuals bearing the rare Clock allele with the largest number of C-terminal polyglutamine repeats found in this species (Q8) show a delayed reproduction and moult later. We explored the association between Clock polymorphism and migration scheduling, as gauged by light-level geolocators, in two barn swallow populations (Switzerland; Po Plain, Italy). Genetic polymorphism was low: 91% of the 64 individuals tracked year-round were Q7/Q7 homozygotes. We compared the phenology of the rare genotypes with the phenotypic distribution of Q7/Q7 homozygotes within each population. In Switzerland, compared to Q7/Q7, two Q6/Q7 males departed earlier from the wintering grounds and arrived earlier to their colony in spring, while a single Q7/Q8 female was delayed for both phenophases. On the other hand, in the Po Plain, three Q6/Q7 individuals had a similar phenology compared to Q7/Q7. The Swiss data are suggestive for a role of genetic polymorphism at a candidate phenological gene in shaping migration traits, and support the idea that Clock polymorphism underlies phenological variation in birds.


Asunto(s)
Migración Animal/fisiología , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Polimorfismo Genético/genética , Golondrinas/genética , Alelos , Animales , Femenino , Genotipo , Italia , Masculino , Reproducción/genética , Estaciones del Año , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...