Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(11): 5837-5849, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38457691

RESUMEN

A method to synthesize stable, raspberry-like nanoparticles (NPs), using surface grafting of poly(glycidyl methacrylate) (PGMA) brushes on a polystyrene (PS) core with varying grafting densities, is reported. A two-step functionalization reaction of PGMA epoxide groups comprising an amination step first using ethylene diamine and then followed by a quaternization using glycidyltrimethylammonium chloride generates permanently and positively charged polyelectrolyte brushes, which result in both steric and electrostatic stabilization. The dispersion stability of the brush-bearing NPs is dramatically improved compared to that of the pristine PS core in salt solutions at ambient (25 °C) and elevated temperatures (60 °C). Additionally, the grafted polyelectrolyte chains undergo a reversible swelling in the presence of different ionic strength (IS) salts, which modulate the surface properties, including roughness, stiffness, and adhesion. An atomic force microscope under both dry and wet conditions was used to image conformational changes of the polyelectrolyte chains during the swelling and deswelling transitions as well as to probe the nanomechanical properties by analyzing the corresponding force-sample separation curves. The quaternized polyelectrolyte brushes undergo a conformational transition from a collapsed state to a swelled state in the osmotic brush (OB) regime triggered by the osmotic gradient of mobile ions to the interior of the polymer chain. At IS ∼ 1 M, the brushes contract and the globules reform (salted brush state) as evidenced by an increase in the surface roughness and a reduction in the adhesion of the brushes. Beyond IS ∼ 1 M, quartz crystal microbalance with dissipation monitoring measurements show that salt uptake continues to take place predominantly on the exterior surface of the brush since salt adsorption is not accompanied by a size increase as measured by dynamic light scattering. The study adds new insights into our understanding of the behavior of NPs bearing salt-responsive polyelectrolyte brushes with adaptive swelling thresholds that can ultimately modulate surface properties.

2.
ACS Appl Mater Interfaces ; 15(27): 33028-33036, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368963

RESUMEN

The structural characteristics of supports, such as surface area and type of porosity, affect the deposition of electrocatalysts and greatly influence their electrochemical performance in fuel cells. In this work, we use a series of high surface area hierarchical porous carbons (HPCs) with defined mesoporosity as model supports to study the deposition mechanism of Pt nanoparticles. The resulting electrocatalysts are characterized by several analytical techniques, and their electrochemical performance is compared to a state-of-the-art, commercial Pt/C system. Despite the similar chemical composition and surface area of the supports, as well as similar amounts of Pt precursor used, the size of the deposited Pt nanoparticles varies, and it is inversely proportional to the mesopore size of the system. In addition, we show that an increase in the size of the catalyst particles can increase the specific activity of the oxygen reduction reaction. We also report on our efforts to improve the overall performance of the above electrocatalyst systems and show that increasing the electronic conductivity of the carbon support by the addition of highly conductive graphene sheets improves the overall performance of an alkaline fuel cell.

3.
Langmuir ; 39(8): 3118-3130, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36791471

RESUMEN

Particle-stabilized emulsions (Pickering emulsions) have recently attracted significant attention in scientific studies and for technological applications. The interest stems from the ease of directly assembling the particles at interfaces and modulating the interfacial properties. In this paper, we demonstrate the formation of stable, practical emulsions leveraging the assembly of ionizable, pH responsive silica nanoparticles, surface-functionalized by a mixture of silanes containing amine/ammonium groups, which renders them positively charged. Using pH as the trigger, the assembly and the behavior of the emulsion are controlled by modulating the charges of the functional groups of the nanoparticle and the oil (crude oil). In addition to their tunable charge, the particular combination of silane coupling agents leads to stable particle dispersions, which is critical for practical applications. Atomic force microscopy and interfacial tension (IFT) measurements are used to monitor the assembly, which is controlled by both the electrostatic interactions between the particles and oil and the interparticle interactions, both of which are modulated by pH. Under acidic conditions, when the surfaces of the oil and the nanoparticles (NPs) are positively charged, the NPs are not attracted at the interface and there is no significant reduction in the IFT. In contrast, under basic conditions in which the oil carries a high negative charge and the amine groups on the silica are deprotonated while still positively charged because of the ammonium groups, the NPs assemble at the interface in a closely packed configuration yielding a jammed state with a high dilatational modulus. As a result, two oil droplets do not coalesce even when pushed against each other and the emulsion stability improves significantly. The study provides new insights into the directed assembly of nanoparticles at fluid interfaces relevant to several applications, including environmental remediation, catalysis, drug delivery, food technology, and oil recovery.

4.
ACS Appl Mater Interfaces ; 15(4): 6113-6122, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692039

RESUMEN

A targeted and controlled delivery of molecular surfactants at oil-water interfaces using the directed assembly of nanoparticles, NPs, is reported. The mechanism of NP assembly at the interface and the release of molecular surfactants is followed by laser scanning confocal microscopy and surface force spectroscopy. The assembly of positively charged polystyrene NPs at the oil-water interface was facilitated by the introduction of carboxylic acid groups in the oil phase (e.g., by adding 1 wt % stearic acid to hexadecane to produce a model oil). The presence of positively charged NPs consistently lowers the stiffness of the water-oil interface. The effect is lessened, when the NPs are present in a solution of NaCl or deionized water at pH 2, consistent with a less dense monolayer of NPs at the interface in the last two systems. In addition, the NPs reduce the interfacial adhesion (i.e., the "stickiness" of the interface or, put differently, the pull-off force experienced by the atomic force microscopy (AFM) tip during retraction). After the assembly, the NPs can release a previously loaded cargo of surfactant molecules, which then facilitate the formation of a much finer oil-water emulsion. As a proof of concept, we demonstrate the release of octadecyl amine, ODA, that has been incorporated into the NPs prior to the assembly. The release of ODA causes the NPs to detach from the interface altering the interfacial properties and leads to finer oil droplets. This approach can be exploited in applications in several fields ranging from pharmaceutical and cosmetics to hydrocarbon recovery and oil-spill remediation, where a targeted and controlled release of surfactants is wanted.

5.
J Am Chem Soc ; 144(45): 20571-20581, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36331111

RESUMEN

The highly efficient bifunctional catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is the key to achieving high-performance rechargeable Zn-air batteries. Non-precious-metal single-atom catalysts (SACs) have attracted intense interest due to their low cost and very high metal atomic utilization; however, high-activity bifunctional non-precious-metal SACs are still rare. Herein, we develop a new nanospace-confined sulfur-enamine copolymerization strategy to prepare a new type of bifunctional Mo SACs with O/S co-coordination (Mo-O2S2-C) supported on the multilayered, hierarchically porous hollow tubes. The as-prepared catalyst can not only expose more active sites and facilitate mass transfer due to their combined micropores, mesopores, and macropores but also have the S/O co-coordination structure for optimizing the adsorption energies of the ORR intermediates. Its ORR activity is among the highest, and it shows a low overpotential of 324 mV for the OER at 10 mA cm-2 in all of the reported Mo-based catalysts. When assembled in a Zn-air battery, it exhibits a high maximal power density of 197.3 mW cm-2 and a long service life of 50 hours, superior to those of Zn-air batteries using commercial Pt/C+IrO2.

6.
Proc Natl Acad Sci U S A ; 119(28): e2116675119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867753

RESUMEN

Collagen is the most abundant component of mammalian extracellular matrices. As such, the development of materials that mimic the biological and mechanical properties of collagenous tissues is an enduring goal of the biomaterials community. Despite the development of molded and 3D printed collagen hydrogel platforms, their use as biomaterials and tissue engineering scaffolds is hindered by either low stiffness and toughness or processing complexity. Here, we demonstrate the development of stiff and tough biohybrid composites by combining collagen with a zwitterionic hydrogel through simple mixing. This combination led to the self-assembly of a nanostructured fibrillar network of collagen that was ionically linked to the surrounding zwitterionic hydrogel matrix, leading to a composite microstructure reminiscent of soft biological tissues. The addition of 5-15 mg mL-1 collagen and the formation of nanostructured fibrils increased the elastic modulus of the composite system by 40% compared to the base zwitterionic matrix. Most notably, the addition of collagen increased the fracture energy nearly 11-fold ([Formula: see text] 180 J m-2) and clearly delayed crack initiation and propagation. These composites exhibit elastic modulus ([Formula: see text] 0.180 MJ) and toughness ([Formula: see text]0.617 MJ m-3) approaching that of biological tissues such as articular cartilage. Maintenance of the fibrillar structure of collagen also greatly enhanced cytocompatibility, improving cell adhesion more than 100-fold with >90% cell viability.


Asunto(s)
Materiales Biocompatibles , Colágeno , Hidrogeles , Ingeniería de Tejidos , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Colágeno/química , Hidrogeles/química , Andamios del Tejido/química
7.
Chem Rev ; 122(6): 6117-6321, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133808

RESUMEN

Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.


Asunto(s)
Suministros de Energía Eléctrica , Protones , Hidrógeno/química , Oxígeno/química , Agua
8.
Langmuir ; 38(1): 62-71, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34958229

RESUMEN

Characterization of complex oil emulsions is critical yet challenging both in science and in many industrial applications. Here we demonstrate for the first time the use of flow cytometry as a fast method for characterizing complex, polydisperse oil-water emulsions. Owing to our interest in understanding how the presence of specific ions might affect the properties of oil-water emulsions including size, polydispersity, and complexity, we present a systematic study of oil emulsions in deionized water and various brines of different ionic strength. Forward scatter (FSC) and side scatter (SSC) intensities associated with detailed statistics were judiciously combined to provide a better understanding of these complex systems. We find that the type and concentration profiles of ions around the oil droplets affect significantly the properties of the emulsion. Weakly hydrated cations NH4+ and Ca2+ appear to be more effective in screening the charge of oil droplets compared to the monovalent Na+ and divalent Mg2+ ions, respectively. As a result, coalescence and formation of larger droplets are seen in the case of NH4Cl and CaCl2 compared to NaCl and MgCl2, respectively. In addition, weakly hydrated anions such as Cl- can come closer to the oil surface and, thus, decrease the effective screening that the Na+ ions provide as compared to SO42- ions, which leads to more stable emulsions in NaCl compared to Na2SO4. In addition to these specific findings, the work demonstrates the utility of the technique as a new tool for characterizing oil emulsions in a wide spectrum of fields ranging from food to oil and gas applications.


Asunto(s)
Agua , Emulsiones , Citometría de Flujo , Concentración Osmolar , Tamaño de la Partícula
9.
Adv Mater ; 34(7): e2106183, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34601774

RESUMEN

An acoustic liquefaction approach to enhance the flow of yield stress fluids during Digital Light Processing (DLP)-based 3D printing is reported. This enhanced flow enables processing of ultrahigh-viscosity resins (µapp  > 3700 Pa s at shear rates γ ˙  = 0.01 s-1 ) based on silica particles in a silicone photopolymer. Numerical simulations of the acousto-mechanical coupling in the DLP resin feed system at different agitation frequencies predict local resin flow velocities exceeding 100 mm s-1 at acoustic transduction frequencies of 110 s-1 . Under these conditions, highly loaded particle suspensions (weight fractions, ϕ = 0.23) can be printed successfully in complex geometries. Such mechanically reinforced composites possess a tensile toughness 2000% greater than the neat photopolymer. Beyond an increase in processible viscosities, acoustophoretic liquefaction DLP (AL-DLP) creates a transient reduction in apparent viscosity that promotes resin recirculation and decreases viscous adhesion. As a result, acoustophoretic liquefaction Digital Light Processing (AL-DLP) improves the printed feature resolution by more than 25%, increases printable object sizes by over 50 times, and can build parts >3 × faster when compared to conventional methodologies.

10.
ACS Appl Mater Interfaces ; 13(21): 25553-25562, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34006101

RESUMEN

A stimuli-responsive, sub-100 nm nanoparticle (NP) platform with a hydrolyzable ester side chain for in situ generation of surfactants is demonstrated. The NPs were synthesized via copolymerization of vinyl-laurate and vinyl-acetate [p-(VL-co-VA), 3:1 molar ratio] and stabilized with a protective poly(ethylene-glycol) shell. The NPs are ∼55 nm in diameter with a zeta potential of -54 mV. Hydrolysis kinetics in an accelerated, base-catalyzed reaction show release of about 11 and 30% of the available surfactant at 25 and 80 °C, respectively. The corresponding values in seawater are 22 and 76%. The efficiency of the released surfactant in reducing the interfacial tension, altering wettability, and stabilizing oil-water emulsion was investigated through contact angle measurements and laser confocal scanning microscopy and benchmarked to sodium laurate, a commercially available surfactant. All these measurements demonstrate both the efficacy of the NP system for surfactant delivery and the ability of the released surfactant to alter wettability and stabilize an oil-water emulsion.

11.
ACS Omega ; 6(8): 5689-5697, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681608

RESUMEN

A new platform that allows encapsulation of anionic surfactants into nanosized capsules and subsequent release upon deployment is described. The system is based on DOWFAX surfactant molecules incorporated into sub-100 nm hollow silica nanoparticles composed of a mesoporous shell. The particles released 40 wt % of the encapsulated surfactant at 70 °C compared to 24 wt % at 25 °C after 21 and 18 days, respectively. The use of the particles for subsurface applications is assessed by studying the effectiveness of the particles to alter the wettability of hydrophobic surfaces and reduction of the interfacial tension. The release of the surfactant molecules in the suspension reduces the contact angle of a substrate from 105 to 25° over 55 min. A sustained release profile is demonstrated by a continuous reduction of the interfacial tension of an oil suspension, where the interfacial tension is reduced from 62 to 2 mN m-1 over a period of 3 days.

12.
Nat Protoc ; 16(4): 2068-2087, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33627845

RESUMEN

To mitigate the adverse effects of elevated temperatures, conventional rigid devices use bulky radiators, heat sinks and fans to dissipate heat from sensitive components. Unfortunately, these thermoregulation strategies are incompatible with soft robots, a growing field of technology that, like biology, builds compliant and highly deformable bodies from soft materials to enable functional adaptability. Here, we design fluidic elastomer actuators that autonomically perspire at elevated temperatures. This strategy incurs operational penalties (i.e., decreased actuation efficiency and loss of hydraulic fluid) but provides for thermoregulation in soft systems. In this bioinspired approach, we 3D-print finger-like actuators from smart gels with embedded micropores that autonomically dilate and contract in response to temperature. During high-temperature operation, the internal hydraulic fluid flows through the dilated pores, absorbs heat and vaporizes. Upon cooling, the pores contract to restrict fluid loss and restore operation. To assess the thermoregulatory performance, this protocol uses non-invasive thermography to measure the local temperatures of the robot under varied conditions. A mathematical model based on Newton's law of cooling quantifies the cooling performance and enables comparison between competing designs. Fabrication of the sweating actuator usually takes 3-6 h, depending on size, and can provide >100 W/kg of additional cooling capacity.


Asunto(s)
Materiales Biomiméticos/síntesis química , Biomimética/métodos , Hidrogeles/química , Impresión Tridimensional , Automatización , Materiales Biomiméticos/química , Procesamiento de Imagen Asistido por Computador , Polímeros/química , Porosidad , Termografía
13.
Sci Robot ; 5(38)2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33022596

RESUMEN

In both biological and engineered systems, functioning at peak power output for prolonged periods of time requires thermoregulation. Here, we report a soft hydrogel-based actuator that can maintain stable body temperatures via autonomic perspiration. Using multimaterial stereolithography, we three-dimensionally print finger-like fluidic elastomer actuators having a poly-N-isopropylacrylamide (PNIPAm) body capped with a microporous (~200 micrometers) polyacrylamide (PAAm) dorsal layer. The chemomechanical response of these hydrogel materials is such that, at low temperatures (<30°C), the pores are sufficiently closed to allow for pressurization and actuation, whereas at elevated temperatures (>30°C), the pores dilate to enable localized perspiration in the hydraulic actuator. Such sweating actuators exhibit a 600% enhancement in cooling rate (i.e., 39.1°C minute-1) over similar non-sweating devices. Combining multiple finger actuators into a single device yields soft robotic grippers capable of both mechanically and thermally manipulating various heated objects. The measured thermoregulatory performance of these sweating actuators (~107 watts kilogram-1) greatly exceeds the evaporative cooling capacity found in the best animal systems (~35 watts kilogram-1) at the cost of a temporary decrease in actuation efficiency.


Asunto(s)
Materiales Biomiméticos , Impresión Tridimensional , Robótica/instrumentación , Sudoración/fisiología , Resinas Acrílicas , Animales , Sistema Nervioso Autónomo/fisiología , Biomimética , Regulación de la Temperatura Corporal/fisiología , Elastómeros , Diseño de Equipo , Hidrogeles , Modelos Biológicos , Porosidad , Reología
14.
Adv Mater ; 32(25): e2001646, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32419251

RESUMEN

The rheological parameters required to print viscoelastic nanoparticle suspensions toward tough elastomers via Digital Light Synthesis (DLS) (an inverted projection stereolithography system) are reported. With a model material of functionalized silica nanoparticles suspended in a poly(dimethylsiloxane) matrix, the rheological-parameters-guided DLS can print structures seven times tougher than those formed from the neat polymers. The large yield stress and high viscosity associated with these high concentration nanoparticle suspensions, however, may prevent pressure-driven flow, a mechanism essential to stereolithography-based printing. Thus, to better predict and evaluate the printability of high concentration nanoparticle suspensions, the boundary of rheological properties compatible with DLS is defined using a non-dimensional Peclet number (Pe). Based on the proposed analysis of rheological parameters, the border of printability at standard temperature and pressure (STP) is established by resin with a silica nanoparticle mass fraction (ϕsilica ) of 0.15. Above this concentration, nanoparticle suspensions have Pe > 1 and are not printable. Beyond STP, the printability can be further extended to ϕsilica = 0.20 via a heating module with lower shear rate to reduce the Pe < 1. The printed rubber possesses even higher toughness (Γ ≈ 155 kJ m-3 ), which is 40% higher over that of ϕsilica = 0.15.

15.
Nanomaterials (Basel) ; 9(6)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31142000

RESUMEN

In the present study, hybrid nanoflowers (HNFs) based on copper (II) or manganese (II) ions were prepared by a simple method and used as nanosupports for the development of effective nanobiocatalysts through the immobilization of lipase B from Pseudozyma antarctica. The hybrid nanobiocatalysts were characterized by various techniques including scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The effect of the addition of carbon-based nanomaterials, namely graphene oxide and carbon nanotubes, as well as magnetic nanoparticles such as maghemite, on the structure, catalytic activity, and operational stability of the hybrid nanobiocatalysts was also investigated. In all cases, the addition of nanomaterials during the preparation of HNFs increased the catalytic activity and the operational stability of the immobilized biocatalyst. Lipase-based magnetic nanoflowers were effectively applied for the synthesis of tyrosol esters in non-aqueous media, such as organic solvents, ionic liquids, and environmental friendly deep eutectic solvents. In such media, the immobilized lipase preserved almost 100% of its initial activity after eight successive catalytic cycles, indicating that these hybrid magnetic nanoflowers can be applied for the development of efficient nanobiocatalytic systems.

16.
Small ; 15(22): e1901666, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31021500

RESUMEN

A new class of solvent free, lyotropic liquid crystal nanocomposites based on gold nanorods (AuNRs) with high nanorod content is reported. Application of shear results in switchable, highly ordered alignment of the nanorods over several centimeters with excellent storage stability for months. For the synthesis, AuNRs are surface functionalized with a charged, covalently tethered corona, which induces fluid-like properties. This honey-like material can be deposited on a substrate and a high orientational order parameter of 0.72 is achieved using a simple shearing protocol. Switching shearing direction results in realignment of the AuNRs. For a film containing 75 wt% of AuNRs the alignment persists for several months. In addition to the lyotropic liquid crystal characteristics, the AuNRs films also exhibit anisotropic electrical conductivity with an order of magnitude difference between the conductivities in direction parallel and perpendicular to the alignment of the AuNRs.

17.
Macromol Rapid Commun ; 40(4): e1800815, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30600569

RESUMEN

This article introduces a simple two-stage method to synthesize and program a photomechanical elastomer (PME) for light-driven artificial muscle-like actuations in soft robotics. First, photochromic azobenzene molecules are covalently attached to a polyurethane backbone via a two-part step-growth polymerization. Next, mechanical alignment is applied to induce anisotropic deformations in the PME-actuating films. Cross-linked through dynamic hydrogen bonds, the PMEs also possess autonomic self-healing properties without external energy input. This self-healing allows for a single alignment step of the PME film and subsequent "cut and paste" assembly for multi-axis actuation of a self-folded soft-robotic gripper from a single degree of freedom optical input.


Asunto(s)
Elastómeros/síntesis química , Compuestos Azo/química , Elastómeros/química , Enlace de Hidrógeno , Estructura Molecular , Procesos Fotoquímicos , Estrés Mecánico
18.
J Mater Chem B ; 7(17): 2855-2864, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255088

RESUMEN

This paper reports the rapid 3D printing of tough (toughness, UT, up to 141.6 kJ m-3), highly solvated (φwater∼ 60 v/o), and antifouling hybrid hydrogels for potential uses in biomedical, smart materials, and sensor applications, using a zwitterionic photochemistry compatible with stereolithography (SLA). A Design of Experiments (DOE) framework was used for systematically investigating the multivariate photochemistry of SLA generally and, specifically, to determine an aqueous SLA system with an additional zwitterionic acrylate, which significantly increases the gelation rate, and the resilience of the resulting hybrid hydrogels relative to an equivalent non-ionic polyacrylamide hydrogel. Specifically, the resulting zwitterionic hybrid hydrogels (Z-gels) can be tuned over a large range of ultimate strains, ca. 0.5 < γult < 5.0, and elastic moduli, ca. 10 < E < 1000 kPa, while also demonstrating a high resilience under cyclic tensile loading. Importantly, unlike traditional chemistry, increasing the elastic modulus of the Z-gels does not necessarily reduce the ultimate strain. Moreover, the Z-gels can be rapidly printed using a desktop commercial SLA 3D printer, with relatively low photoirradiation dosages of visible light (135 to 675 mJ cm-2 per 50-100 µm layer). Compared with the counterpart polyacrylamide hydrogels, the Z-gels have greater antifouling properties and exhibit 58.2% less absorption of bovine serum albumin.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Estereolitografía/normas , Humanos
19.
Acta Biomater ; 62: 91-101, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28865991

RESUMEN

Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6±5.9µm and a total pore surface area of 7.72±1.7m2·g-1. The electrical conductivity, based on I-V curves, was measured to be 140µS·cm-1 with a reduced, but stable conductivity of 6.1µS·cm-1 after 28days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. STATEMENT OF SIGNIFICANCE: Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold based on PEDOT:PSS, and provide evidence that this purely synthetic material is a promising candidate for bone tissue engineering.


Asunto(s)
Huesos/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Osteoblastos/metabolismo , Polímeros/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Antígenos de Diferenciación/biosíntesis , Huesos/citología , Línea Celular , Regulación de la Expresión Génica , Ratones , Osteoblastos/citología , Porosidad
20.
ACS Appl Mater Interfaces ; 9(43): 38109-38116, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28872816

RESUMEN

We demonstrate in this study a wrinkle-free, superhydrophilic cotton fabric (contact angle ∼0°) by uniformly attaching specially engineered nanoparticles to plasma-pretreated cotton fabric. Because of their highly charged nature, the nanoparticles are firmly anchored on the fabric via electrostatic interactions, as confirmed by microscopy and chemical analyses. The durability of wetting behavior and wrinkle-free property of the nanoparticle-coated fabrics were evaluated via aging, laundering, and abrasion tests. The strongly attached coatings are stable enough to maintain their superhydrophilic nature even after 60 days of aging at room temperature, 50 laundering cycles, and 25 000 abrasion cycles. Moreover, the nanoparticle-coated superhydrophilic fabrics exhibit great wrinkle-recovery property, tensile strength, and abrasion resistance performance up to 25 000 abrasion cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...