RESUMEN
We developed clonal cell lines of human bronchial smooth muscle origin by retroviral transduction of temperature-sensitive simian virus 40 large tumor (T) antigen. These cells show increased growth potential at 33 degrees C, but on shift to the nonpermissive temperature (39 degrees C), they show diminished or arrested growth. In addition to the expected reduction in the level of large T antigen, cells shifted to 39 degrees C show increased expression of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1), characteristic of cells arrested in G1 of the cell cycle. Shifted cells undergo a process of cell hypertrophy, as demonstrated by increased time of flight and forward scatter, as well as increased expression of the contractile proteins alpha-smooth muscle actin, myosin light chain kinase, and SM22. Changes in contractile protein expression were regulated primarily in a posttranscriptional manner. Phosphatidylinositol 3-kinase activity was increased in shifted cells, and chemical inhibition of phosphatidylinositol 3-kinase attenuated alpha-actin and myosin light-chain kinase expression. We have developed clonal cell lines of human bronchial smooth muscle origin that may be useful for the study of airway smooth muscle biology. Furthermore, we demonstrate that arrest of airway smooth muscle cell cycle traversal can induce cellular hypertrophy, which parallels changes observed in the airways of patients with severe asthma.
Asunto(s)
Bronquios/citología , Bronquios/fisiología , Línea Celular Transformada/fisiología , Células Clonales/fisiología , Miocitos del Músculo Liso/fisiología , Antígenos Virales de Tumores , Asma/genética , Técnicas de Cultivo de Célula , División Celular/fisiología , Transformación Celular Viral , Humanos , Hipertrofia/genética , Oncogenes , Fenotipo , Virus 40 de los Simios/inmunología , TemperaturaRESUMEN
The transcription factor homeobox B4 (HOXB4) is preferentially expressed in immature hematopoietic cells and implicated in the transition from primitive hematopoiesis to definitive hematopoiesis as well as in immature hematopoietic cell proliferation and differentiation. We previously identified Hox response element 1 (HxRE-1) and HxRE-2/E-box as 2 critical DNA-binding sites of the HOXB4 promoter active in hematopoietic cells and demonstrated that upstream stimulating factor 1 and 2 (USF1/2) activate HOXB4 transcription through their binding to the E-box site. Here we report that the trimeric regulatory complex nuclear factor Y (NF-Y) is the factor that recognizes HxRE-1 and activates the HOXB4 promoter in hematopoietic cells. We further show that NF-Y interacts biochemically with USF1/2 on the HOXB4 promoter, and that the formation of this NF-Y/USF1/2 complex is required for the full activity of the HOXB4 promoter. Most important, NF-Ya subunit protein levels are found to be lower in c-Kit-Gr-1+ granulocytic bone marrow (BM) cells than in c-Kit+ immature BM cells, in parallel with a reduction of NF-Y occupancy on the HOXB4 promoter as shown by chromatin immunoprecipitation (ChIP) assay. These results suggest that NF-Y is a developmentally regulated inducer of the HOXB4 gene in hematopoietic cells.