RESUMEN
Rare diseases are heterogeneous diseases characterized by various symptoms and signs. Due to the low prevalence of such conditions (less than 1 in 2000 people), medical expertise is limited, knowledge is poor and patients' care provided by medical centers is inadequate. An accurate diagnosis is frequently challenging and ongoing research is also insufficient, thus complicating the understanding of the natural progression of the rarest disorders. This review aims at presenting the multimodal approach supported by the integration of multiple analyses and disciplines as a valuable solution to clarify complex genotype-phenotype correlations and promote an in-depth examination of rare disorders. Taking into account the literature from large-scale population studies and ongoing technological advancement, this review described some examples to show how a multi-skilled team can improve the complex diagnosis of rare diseases. In this regard, Facio-Scapulo-Humeral muscular Dystrophy (FSHD) represents a valuable example where a multimodal approach is essential for a more accurate and precise diagnosis, as well as for enhancing the management of patients and their families. Given their heterogeneity and complexity, rare diseases call for a distinctive multidisciplinary approach to enable diagnosis and clinical follow-up.
Asunto(s)
Distrofia Muscular Facioescapulohumeral , Enfermedades Raras , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Enfermedades Raras/terapia , Distrofia Muscular Facioescapulohumeral/diagnóstico , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/terapia , Estudios de Asociación Genética/métodos , FenotipoRESUMEN
Autosomal dominant retinitis pigmentosa (AD-RP) is caused by several genes, among which RHO is one of the most investigated. This article will be focused on RHO and its role in explaining AD-RP cases in the Italian population, taking advantage of the experience of the Genomic Medicine Laboratory UILDM at the Santa Lucia Foundation IRCCS. The retrospective evaluation of the distribution of RHO variants in the Italian patients with a clinical suspicion of RP pointed out eight variants. Of them, four variants (c.632A>T, c.1040C>T, c.1030C>T, c.383_392del) were pathogenic and made it possible to confirm the diagnosis of AD-RP in nine affected patients, highlighting a lower frequency (17%) of RHO variants compared to previous studies (30-40%). In addition, this study identified four variants classified as Variants of Uncertain Significance (VUS). In conclusion, the experience of the Genomic Medicine Laboratory provides an overview of the distribution of RHO variants in the Italian population, highlighting a slightly lower frequency of these variants in our cases series compared to previous reports. However, further studies on RHO variants are essential to characterize peculiar RP phenotypes and extend the spectrum of disease associated with this gene.
Asunto(s)
Retinitis Pigmentosa , Humanos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Italia , Femenino , Masculino , Persona de Mediana Edad , Adulto , Mutación , Estudios Retrospectivos , Genes Dominantes , Anciano , Rodopsina/genética , Linaje , FenotipoRESUMEN
(1) Multiple sclerosis (MS) is identified by a complex interaction between central inflammation and neurodegeneration. Genetic individual variability could play a significative role in clinical presentation. The interleukin-5 (IL-5) rs2069812 single-nucleotide polymorphism (SNP) seems to define the clinical course of Th2 autoimmune diseases, while its role in MS has never been investigated. (2) In a group of 230 patients diagnosed with relapsing-remitting MS (RR-MS) or progressive MS (P-MS) and controls (IC), rs2069812 polymorphism, cerebrospinal fluid (CSF) levels of inflammatory mediators, and clinical and demographic characteristics were determined. In RR-MS patients, No Evidence of Disease Activity (NEDA-3) at three years of follow-up was detected. (3) We identified higher levels of proinflammatory cytokines, particularly IL-2 (median [IQR], RR-MS = 0.2 [0-0.7]; P-MS = 0.1 [0-1.6]; IC = 0.1 [0.0-0.1]; p < 0.005), IL-6 (RR-MS = 0.9 [0.3-2.3]; P-MS = 0.8 [0.1-2.7]; IC = 0.1 [0.0-0.5]; p < 0.005), IL-12 (RR-MS = 0.5 [0-1.1]; P-MS = 0.5 [0-1.1]; IC = 0.0 [0.0-0.3]; p < 0.005), and GM-CSF (RR-MS = 15.6 [4.8-26.4]; P-MS = 14 [3.3-29.7]; IC = 8.9 [4.7-11.7]; p < 0.005) in MS patients compared with IC. Conversely, anti-inflammatory cytokines, specifically IL-5 (RR-MS = 0.65 [0-2.4]; P-MS = 0.1 [0-0.8]; IC = 1.7 [0.6-2.8]; p < 0.005) and IL-1ra (RR-MS = 14.7 [4.9-26.4]; P-MS = 13.1 [4.7-22.2]; IC = 27.8 [17.7-37.6]; p < 0.005) were higher in controls. According to rs2069812, in MS patients, the T-allele was associated with higher concentrations of proinflammatory mediators (IL-2, CT/TT = 0.2 [0.0-2.0]; CC = 0.1 [0.0-0.4], p = 0.015; IL-6, CT/TT = 1.2 [0.4-3.2] vs. CC = 0.7 [0.1-1.7], p = 0.007; IL-15, CT/TT = 0.1 [0.0-9.5] vs. CC = 0.0 [0.0-0.1], p = 0.019; and GM-CSF, CT/TT = 0.1 [0.0-0.6] vs. CC = 0.05 [0.0-0.1], p < 0.001), and CC was associated with anti-inflammatory mediators (IL-5, CT/TT = 0.03 [0.0-1.9] vs. CC = 1.28 [0.0-2.7], p = 0.001; IL-1ra, CT/TT = 12.1 [4.1-25.9] vs. CC = 18.1 [12.1-26.9], p = 0.006). We found the same differences in RR-MS patients (IL-2, T-allele median [IQR] = 0.3 [0.0-2.0] vs. C-allele, median [IQR] = 0.04 [0.0-0.3]; p = 0.005; IL-6, T-allele, median [IQR] = 1.3 [0.4-3.3] vs. C-allele, median [IQR] = 0.6 [0.03-1.5]; p = 0.001; IL-15, T-allele, median [IQR] = 0.1 [0.0-9.5] vs. C-allele, median [IQR] = 0.0 [0.0-0.1]; p = 0.008; GM-CSF, T-allele, median [IQR] = 0.1 [0.0-97.9] vs. C-allele, median [IQR] = 0.0 [0.0-0.001]; p < 0.001; IL-5, T-allele, median [IQR] = 0.02 [0.0-2.2] vs. C-allele, median [IQR] = 1.5 [0.0-2.9]; p = 0.016; and IL-1ra, T-allele, median [IQR] = 12.1 [4.3-26.4] vs. C-allele, median [IQR] = 18.5 [12.7-28.3]; p = 0.006) but not in P-MS, except for IL-5 (T-allele, median [IQR] = 0.1 [0-0.23] vs. C-allele, median [IQR] = 0.6 [0.0-2.5]; p = 0.022). Finally, we identified an association between CC in RR-MS patients and NEDA-3 after three years of follow-up (p = 0.007). (4) We describe, for the first time, the role of an SNP of the IL-5 gene in regulating central neuroinflammation and influencing clinical course in MS patients.
Asunto(s)
Interleucina-5 , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Masculino , Adulto , Interleucina-5/genética , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Estudios Prospectivos , Citocinas/genética , Citocinas/metabolismo , Enfermedades Neuroinflamatorias/genética , Inflamación/genética , Predisposición Genética a la Enfermedad , Estudios de Casos y ControlesRESUMEN
MiR-142-3p has recently emerged as key factor in tailoring personalized treatments for multiple sclerosis (MS), a chronic autoimmune demyelinating disease of the central nervous system (CNS) with heterogeneous pathophysiology and an unpredictable course. With its involvement in a detrimental regulatory axis with interleukin-1beta (IL1ß), miR-142-3p orchestrates excitotoxic synaptic alterations that significantly impact both MS progression and therapeutic outcomes. In this study, we investigated for the first time the influence of individual genetic variability on the miR-142-3p excitotoxic effect in MS. We specifically focused on the single-nucleotide polymorphism Val66Met (rs6265) of the brain-derived neurotrophic factor (BDNF) gene, known for its crucial role in CNS functioning. We assessed the levels of miR-142-3p and IL1ß in cerebrospinal fluid (CSF) obtained from a cohort of 114 patients with MS upon diagnosis. By stratifying patients according to their genetic background, statistical correlations with clinical parameters were performed. Notably, in Met-carrier patients, we observed a decoupling of miR-142-3p levels from IL1ß levels in the CSF, as well as from of disease severity (Expanded Disability Status Score, EDSS; Multiple Sclerosis Severity Score, MSSS; Age-Related Multiple Sclerosis Severity Score, ARMSS) and progression (Progression Index, PI). Our discovery of the interference between BDNF Val66Met polymorphism and the synaptotoxic IL1ß-miR-142-3p axis, therefore hampering miR-142-3p action on MS course, provides valuable insights for further development of personalized medicine in the field.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Interleucina-1beta , MicroARNs , Esclerosis Múltiple , Polimorfismo de Nucleótido Simple , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , MicroARNs/genética , Femenino , Masculino , Adulto , Esclerosis Múltiple/genética , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/patología , Persona de Mediana Edad , Interleucina-1beta/genética , Interleucina-1beta/líquido cefalorraquídeo , Índice de Severidad de la Enfermedad , Predisposición Genética a la EnfermedadRESUMEN
Artificial intelligence (AI) is rapidly transforming the field of medicine, announcing a new era of innovation and efficiency. Among AI programs designed for general use, ChatGPT holds a prominent position, using an innovative language model developed by OpenAI. Thanks to the use of deep learning techniques, ChatGPT stands out as an exceptionally viable tool, renowned for generating human-like responses to queries. Various medical specialties, including rheumatology, oncology, psychiatry, internal medicine, and ophthalmology, have been explored for ChatGPT integration, with pilot studies and trials revealing each field's potential benefits and challenges. However, the field of genetics and genetic counseling, as well as that of rare disorders, represents an area suitable for exploration, with its complex datasets and the need for personalized patient care. In this review, we synthesize the wide range of potential applications for ChatGPT in the medical field, highlighting its benefits and limitations. We pay special attention to rare and genetic disorders, aiming to shed light on the future roles of AI-driven chatbots in healthcare. Our goal is to pave the way for a healthcare system that is more knowledgeable, efficient, and centered around patient needs.
Asunto(s)
Inteligencia Artificial , Enfermedades Raras , Humanos , Aprendizaje Profundo , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Enfermedades Raras/terapiaRESUMEN
The gold standard for facioscapulohumeral muscular dystrophy (FSHD) genetic diagnostic procedures was published in 2012. With the increasing complexity of the genetics of FSHD1 and 2, the increase of genetic testing centers, and the start of clinical trials for FSHD, it is crucial to provide an update on our knowledge of the genetic features of the FSHD loci and renew the international consensus on the molecular testing recommendations. To this end, members of the FSHD European Trial Network summarized the evidence presented during the 2022 ENMC meeting on Genetic diagnosis, clinical outcome measures, and biomarkers. The working group additionally invited genetic and clinical experts from the USA, India, Japan, Australia, South-Africa, and Brazil to provide a global perspective. Six virtual meetings were organized to reach consensus on the minimal requirements for genetic confirmation of FSHD1 and FSHD2. Here, we present the clinical and genetic features of FSHD, specific features of FSHD1 and FSHD2, pros and cons of established and new technologies (Southern blot in combination with either linear or pulsed-field gel electrophoresis, molecular combing, optical genome mapping, FSHD2 methylation analysis and FSHD2 genotyping), the possibilities and challenges of prenatal testing, including pre-implantation genetic testing, and the minimal requirements and recommendations for genetic confirmation of FSHD1 and FSHD2. This consensus is expected to contribute to current clinical management and trial-readiness for FSHD.
Asunto(s)
Pruebas Genéticas , Distrofia Muscular Facioescapulohumeral , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/diagnóstico , Humanos , Pruebas Genéticas/normas , Pruebas Genéticas/métodos , Guías de Práctica Clínica como AsuntoRESUMEN
Introduction: High repeat expansion (HRE) alleles in C9orf72 have been linked to both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); ranges for intermediate allelic expansions have not been defined yet, and clinical interpretation of molecular data lacks a defined genotype-phenotype association. In this study, we provide results from a large multicenter epidemiological study reporting the distribution of C9orf72 repeats in healthy elderly from the Italian population. Methods: A total of 967 samples were collected from neurologically evaluated healthy individuals over 70 years of age in the 13 institutes participating in the RIN (IRCCS Network of Neuroscience and Neurorehabilitation) based in Italy. All samples were genotyped using the AmplideXPCR/CE C9orf72 Kit (Asuragen, Inc.), using standardized protocols that have been validated through blind proficiency testing. Results: All samples carried hexanucleotide G4C2 expansion alleles in the normal range. All samples were characterized by alleles with less than 25 repeats. In particular, 93.7% of samples showed a number of repeats ≤10, 99.9% ≤20 repeats, and 100% ≤25 repeats. Conclusion: This study describes the distribution of hexanucleotide G4C2 expansion alleles in an Italian healthy population, providing a definition of alleles associated with the neurological healthy phenotype. Moreover, this study provides an effective model of federation between institutes, highlighting the importance of sharing genomic data and standardizing analysis techniques, promoting translational research. Data derived from the study may improve genetic counseling and future studies on ALS/FTD.
RESUMEN
Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease, although 10%-30% of cases are sporadic. However, this percentage may include truly de novo patients (carrying a reduced D4Z4 allele that is not present in either of the parents) and patients with apparently sporadic disease resulting from mosaicism, non-penetrance, or complex genetic situations in either patients or parents. In this study, we characterized the D4Z4 Reduced Alleles (DRA) and evaluated the frequency of truly de novo cases in FSHD1 in a cohort of DNA samples received consecutively for FSHD-diagnostic from 100 Italian families. The D4Z4 testing revealed that 60 families reported a DRA compatible with FSHD1 (1-10 RU). The DRA co-segregated with the disease in most cases. Five families with truly de novo cases were identified, suggesting that this condition may be slightly lower (8%) than previously reported. In addition, D4Z4 characterization in the investigated families showed 4% of mosaic cases and 2% with translocations. This study further highlighted the importance of performing family studies for clarifying apparently sporadic FSHD cases, with significant implications for genetic counseling, diagnosis, clinical management, and procreative choices for patients and families.
Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/diagnóstico , Distrofia Muscular Facioescapulohumeral/genética , Alelos , Mosaicismo , Italia/epidemiología , Cromosomas Humanos Par 4/genéticaRESUMEN
Introduction: Pure hereditary spastic paraplegia (SPG) type 4 (SPG4) is caused by mutations of SPAST gene. This study aimed to analyze SPAST variants in SPG4 patients to highlight the occurrence of splicing mutations and combine functional studies to assess the relevance of these variants in the molecular mechanisms of the disease. Methods: We performed an NGS panel in 105 patients, in silico analysis for splicing mutations, and in vitro minigene assay. Results and discussion: The NGS panel was applied to screen 105 patients carrying a clinical phenotype corresponding to upper motor neuron syndrome (UMNS), selectively affecting motor control of lower limbs. Pathogenic mutations in SPAST were identified in 12 patients (11.42%), 5 missense, 3 frameshift, and 4 splicing variants. Then, we focused on the patients carrying splicing variants using a combined approach of in silico and in vitro analysis through minigene assay and RNA, if available. For two splicing variants (i.e., c.1245+1G>A and c.1414-2A>T), functional assays confirm the types of molecular alterations suggested by the in silico analysis (loss of exon 9 and exon 12). In contrast, the splicing variant c.1005-1delG differed from what was predicted (skipping exon 7), and the functional study indicates the loss of frame and formation of a premature stop codon. The present study evidenced the high splice variants in SPG4 patients and indicated the relevance of functional assays added to in silico analysis to decipher the pathogenic mechanism.
RESUMEN
Introduction: Doyne honeycomb retinal dystrophy (DHRD), or autosomal dominant radial drusen, is a genetic disease caused by pathogenic variants of the epidermal growth factor (EGF)-containing fibulin-like extracellular matrix protein 1 EFEMP1 gene and is characterized by the formation of subretinal drusenoid deposits. In a previous study, we reported the short-term beneficial effects of nanosecond laser treatment (2RT) on retinal function in DHRD. The aim of the present report was to describe the findings of a long-term follow-up of retinal structure/function in a small case series of patients with DHRD who underwent 2RT treatment. Case Presentation: Three DHRD patients (case 1, male and cases 2 and 3, two sister females, age range 41-46) with EFEMP1 pathogenic variant (c.1033C>T; p.R345W) and drusenoid deposits at the posterior pole were examined at baseline and after 2RT treatment, at regular intervals (every 2-4 months) up to 30 months. All 3 patients underwent one or two treatment sessions in one or both eyes during the follow-up period. Case 3 was treated with only the left eye (LE). Each patient underwent a full ophthalmologic examination, spectral domain optical coherence tomography (OCT), central perimetry with frequency doubling technology, and mesopic and photopic Ganzfeld electroretinograms. Compared to baseline findings, during follow-up, visual acuity improved in both eyes in case 1 and LE in case 2, while it decreased in the right eye in case 2 and LE in case 3; perimetric sensitivity was stable in case 1 and improved in both eyes in cases 2 and 3; and electroretinogram amplitude improved in cases 1 and 2 and was stable in case 3 (both eyes). OCT central macular thickness and retinal structure were stable in all cases. None of the patients had treatment-related side effects. Conclusion: This is the first report showing that in a long-term follow-up, 2RT treatment in DHRD may improve or stabilize some retinal function parameters without significant structural changes.
RESUMEN
Breakthrough infections in SARS-CoV-2 vaccinated individuals are an ideal circumstance for the simultaneous exploration of both the vaccine-induced memory reaction to the spike (S) protein and the primary response to the membrane (M) and nucleocapsid (N) proteins generated by natural infection. We monitored 15 healthcare workers who had been vaccinated with two doses of Pfizer BioNTech BNT162b2 and were then later infected with the SARS-CoV-2 B.1.617.2. (Delta) variant, analysing the antiviral humoral and cellular immune responses. Natural infection determined an immediate and sharp rise in anti-RBD antibody titres and in the frequency of both S-specific antibody secreting cells (ASCs) and memory B lymphocytes. T cells responded promptly to infection by activating and expanding already at 2-5 days. S-specific memory and emerging M- and N-specific T cells both expressed high levels of activation markers and showed effector capacity with similar kinetics but with different magnitude. The results show that natural infection with SARS-CoV-2 in vaccinated individuals induces fully functional and rapidly expanding T and B lymphocytes in concert with the emergence of novel virus-specific T cells. This swift and punctual response also covers viral variants and captures a paradigmatic case of a healthy adaptive immune reaction to infection with a mutating virus.
RESUMEN
BACKGROUND AND OBJECTIVE: Early-onset Parkinson's disease (EOPD) commonly recognizes a genetic basis; thus, patients with EOPD are often addressed to diagnostic testing based on next-generation sequencing (NGS) of PD-associated multigene panels. However, NGS interpretation can be challenging in a diagnostic setting, and few studies have addressed this issue so far. METHODS: We retrospectively collected data from 648 patients with PD with age at onset younger than 55 years who underwent NGS of a minimal shared panel of 15 PD-related genes, as well as PD-multiplex ligation-dependent probe amplification in eight Italian diagnostic laboratories. Data included a minimal clinical dataset, the complete list of variants included in the diagnostic report, and final interpretation (positive/negative/inconclusive). Patients were further stratified based on age at onset ≤40 years (very EOPD, n = 157). All variants were reclassified according to the latest American College of Medical Genetics and Genomics criteria. For classification purposes, PD-associated GBA1 variants were considered diagnostic. RESULTS: In 186 of 648 (29%) patients, the diagnostic report listed at least one variant, and the outcome was considered diagnostic (positive) in 105 (16%). After reanalysis, diagnosis changed in 18 of 186 (10%) patients, with 5 shifting from inconclusive to positive and 13 former positive being reclassified as inconclusive. A definite diagnosis was eventually reached in 97 (15%) patients, of whom the majority carried GBA1 variants or, less frequently, biallelic PRKN variants. In 89 (14%) cases, the genetic report was inconclusive. CONCLUSIONS: This study attempts to harmonize reporting of PD genetic testing across several diagnostic labs and highlights current difficulties in interpreting genetic variants emerging from NGS-multigene panels, with relevant implications for counseling. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Humanos , Persona de Mediana Edad , Adulto , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Estudios Retrospectivos , Mutación , Pruebas Genéticas , Edad de InicioRESUMEN
Introduction: Despite the progress made in the study of Facioscapulohumeral Dystrophy (FSHD), the wide heterogeneity of disease complicates its diagnosis and the genotype-phenotype correlation among patients and within families. In this context, the present work employed Whole Exome Sequencing (WES) to investigate known and unknown genetic contributors that may be involved in FSHD and may represent potential disease modifiers, even in presence of a D4Z4 Reduced Allele (DRA). Methods: A cohort of 126 patients with clinical signs of FSHD were included in the study, which were characterized by D4Z4 sizing, methylation analysis and WES. Specific protocols were employed for D4Z4 sizing and methylation analysis, whereas the Illumina® Next-Seq 550 system was utilized for WES. The study included both patients with a DRA compatible with FSHD diagnosis and patients with longer D4Z4 alleles. In case of patients harboring relevant variants from WES, the molecular analysis was extended to the family members. Results: The WES data analysis highlighted 20 relevant variants, among which 14 were located in known genetic modifiers (SMCHD1, DNMT3B and LRIF1) and 6 in candidate genes (CTCF, DNMT1, DNMT3A, EZH2 and SUV39H1). Most of them were found together with a permissive short (4-7 RU) or borderline/long DRA (8-20 RU), supporting the possibility that different genes can contribute to disease heterogeneity in presence of a FSHD permissive background. The segregation and methylation analysis among family members, together with clinical findings, provided a more comprehensive picture of patients. Discussion: Our results support FSHD pathomechanism being complex with a multigenic contribution by several known (SMCHD1, DNMT3B, LRIF1) and possibly other candidate genes (CTCF, DNMT1, DNMT3A, EZH2, SUV39H1) to disease penetrance and expressivity. Our results further emphasize the importance of extending the analysis of molecular findings within the proband's family, with the purpose of providing a broader framework for understanding single cases and allowing finer genotype-phenotype correlations in FSHD-affected families.
RESUMEN
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, and it is typically caused by PKD1 and PKD2 heterozygous variants. Nonetheless, the extensive phenotypic variability observed among affected individuals, even within the same family, suggests a more complex pattern of inheritance. We describe an ADPKD family in which the proband presented with an earlier and more severe renal phenotype (clinical diagnosis at the age of 14 and end-stage renal disease aged 24), compared to the other affected family members. Next-generation sequencing (NGS)-based analysis of polycystic kidney disease (PKD)-associated genes in the proband revealed the presence of a pathogenic PKD2 variant and a likely pathogenic variant in PKD1, according to the American College of Medical Genetics and Genomics (ACMG) criteria. The PKD2 nonsense p.Arg872Ter variant was segregated from the proband's father, with a mild phenotype. A similar mild disease presentation was found in the proband's aunts and uncle (the father's siblings). The frameshift p.Asp3832ProfsTer128 novel variant within PKD1 carried by the proband in addition to the pathogenic PKD2 variant was not found in either parent. This report highlights that the co-inheritance of two or more PKD genes or alleles may explain the extensive phenotypic variability among affected family members, thus emphasizing the importance of NGS-based techniques in the definition of the prognostic course.
Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/genética , Genes Reguladores , Hermanos , AlelosRESUMEN
Stargardt macular dystrophy is a genetic disorder, but in many cases, the causative gene remains unrevealed. Through a combined approach (whole-exome sequencing and phenotype/family-driven filtering algorithm) and a multilevel validation (international database searching, prediction scores calculation, splicing analysis assay, segregation analyses), a biallelic mutation in the RDH8 gene was identified to be responsible for Stargardt macular dystrophy in a consanguineous Italian family. This paper is a report on the first family in which a biallelic deleterious mutation in RDH8 is detected. The disease phenotype is consistent with the expected phenotype hypothesized in previous studies on murine models. The application of the combined approach to genetic data and the multilevel validation allowed the identification of a splicing mutation in a gene that has never been reported before in human disorders.
Asunto(s)
Algoritmos , Empalme del ARN , Humanos , Animales , Ratones , Bioensayo , Bases de Datos Factuales , Enfermedad de Stargardt/genéticaRESUMEN
The alteration of epigenetic modifications, including DNA methylation, can contribute to the etiopathogenesis and progression of many diseases. Among them, facioscapulohumeral dystrophy (FSHD) is a muscular disorder characterized by the loss of repressive epigenetic features affecting the D4Z4 locus (4q35). As a consequence, these alterations are responsible for DNA hypomethylation and a transcriptional-active chromatin conformation change that, in turn, lead to the aberrant expression of DUX4 in muscle cells. In the present study, methylation levels of 29 CpG sites of the DR1 region (within each repeat unit of the D4Z4 macrosatellite) were assessed on 335 subjects by employing primers designed for enhancing the performance of the assay. First, the DR1 original primers were optimized by adding M13 oligonucleotide tails. Moreover, the DR1 reverse primer was replaced with a degenerate one. As a result, the protocol optimization allowed a better sequencing resolution and a more accurate evaluation of DR1 methylation levels. Moreover, the assessment of the repeatability of measurements proved the reliability and robustness of the assay. The optimized protocol emerges as an excellent method to detect methylation levels compatible with FSHD.
RESUMEN
The autophagy process recycles dysfunctional cellular components and protein aggregates by sequestering them in autophagosomes directed to lysosomes for enzymatic degradation. A basal level of autophagy is essential for skeletal muscle maintenance. Increased autophagy occurs in several forms of muscular dystrophy and in the merosin-deficient congenital muscular dystrophy 1A mouse model (dy3k/dy3k) lacking the laminin-α2 chain. This pilot study aimed to compare autophagy marker expression and autophagosomes presence using light and electron microscopes and western blotting in diagnostic muscle biopsies from newborns affected by different congenital muscular myopathies and dystrophies. Morphological examination showed dystrophic muscle features, predominance of type 2A myofibers, accumulation of autophagosomes in the subsarcolemmal areas, increased number of autophagosomes overexpressing LC3b, Beclin-1 and ATG5, in the merosin-deficient newborn suggesting an increased autophagy. In Duchenne muscular dystrophy, nemaline myopathy, and spinal muscular atrophy the predominant accumulation of p62+ puncta rather suggests an autophagy impairment.
RESUMEN
BACKGROUND: Retinal dystrophies related to damaging variants in the cadherin-related family member 1 (CDHR1) gene are rare and phenotypically heterogeneous. Here, we report a longitudinal (three-year) structure-function evaluation of a patient with a CDHR1-related retinal dystrophy. METHODS: A 14-year-old girl was evaluated between 2019 and 2022. An ophthalmological assessment, including color vision, perimetry, electroretinography, and multimodal imaging of the retina, was performed periodically every six months. Next-generation sequencing disclosed two likely pathogenic/pathogenic variants in the CDHR1 gene, in compound heterozygosity, confirmed by segregation analysis. RESULTS: At first examination, the patient showed a cone-rod pattern retinal dystrophy. Over follow-up, there was a decline of visual acuity and perimetric sensitivity (by ≥0.3 and 0.6 log units, respectively). Visual loss was associated with a progressive increase in inner retinal thickness (by 30%). Outer retina showed no detectable changes over the follow-up. CONCLUSIONS: The results indicate that, in this patient with a CDHR1-related cone-rod dystrophy, the progression to severe visual loss was paralleled by a progressive inner retinal thickening, likely a reflection of remodeling. Inner retinal changes over time may be functionally relevant in view of the therapeutic attempts based on gene therapy or stem cells to mitigate photoreceptor loss.
RESUMEN
In 1997, it was discovered that maternal plasma contains Cell-Free Fetal DNA (cffDNA). cffDNA has been investigated as a source of DNA for non-invasive prenatal testing for fetal pathologies, as well as for non-invasive paternity testing. While the advent of Next Generation Sequencing (NGS) led to the routine use of Non-Invasive Prenatal Screening (NIPT or NIPS), few data are available regarding the reliability and reproducibility of Non-Invasive Prenatal Paternity Testing (NIPPT or NIPAT). Here, we present a non-invasive prenatal paternity test (NIPAT) analyzing 861 Single Nucleotide Variants (SNV) from cffDNA through NGS technology. The test, validated on more than 900 meiosis samples, generated log(CPI)(Combined Paternity Index) values for designated fathers ranging from +34 to +85, whereas log(CPI) values calculated for unrelated individuals were below -150. This study suggests that NIPAT can be used with high accuracy in real cases.
Asunto(s)
Ácidos Nucleicos Libres de Células , Paternidad , Embarazo , Femenino , Humanos , Reproducibilidad de los Resultados , Diagnóstico Prenatal , Feto , ADN/genética , Ácidos Nucleicos Libres de Células/genéticaRESUMEN
The growing and rapid development of high-throughput sequencing technologies have allowed a greater understanding of the mechanisms underlying gene expression regulation. Editing the epigenome and epitranscriptome directs the fate of the transcript influencing the functional outcome of each mRNA. In this context, non-coding RNAs play a decisive role in addressing the expression regulation at the gene and chromosomal levels. Long-noncoding RNAs, consisting of more than 200 nucleotides, have been shown to act as epigenetic regulators in several key molecular processes involving neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Long-noncoding RNAs are abundantly expressed in the central nervous system, suggesting that their deregulation could trigger neuronal degeneration through RNA modifications. The evaluation of their diagnostic significance and therapeutic potential could lead to new treatments for these diseases for which there is no cure.