Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiat Res ; 197(1): 43-56, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33857285

RESUMEN

Experimental mouse studies are important to gain a comprehensive, quantitative and mechanistic understanding of the biological factors that modify individual risk of radiation-induced health effects, including age at exposure, dose, dose rate, organ/tissue specificity and genetic factors. In this study, neonatal Ptch1+/- mice bred on CD1 and C57Bl/6 background received whole-body irradiation at postnatal day 2. This time point represents a critical phase in the development of the eye lens, cerebellum and dentate gyrus (DG), when they are also particularly susceptible to radiation effects. Irradiation was performed with γ rays (60Co) at doses of 0.5, 1 and 2 Gy, delivered at 0.3 Gy/min or 0.063 Gy/min. Wild-type and mutant mice were monitored for survival, lens opacity, medulloblastoma (MB) and neurogenesis defects. We identified an inverse genetic background-driven relationship between the radiosensitivity to induction of lens opacity and MB and that to neurogenesis deficit in Ptch1+/- mutants. In fact, high incidence of radiation-induced cataract and MB were observed in Ptch1+/-/CD1 mutants that instead showed no consequence of radiation exposure on neurogenesis. On the contrary, no induction of radiogenic cataract and MB was reported in Ptch1+/-/C57Bl/6 mice that were instead susceptible to induction of neurogenesis defects. Compared to Ptch1+/-/CD1, the cerebellum of Ptch1+/-/C57Bl/6 mice showed increased radiosensitivity to apoptosis, suggesting that differences in processing radiation-induced DNA damage may underlie the opposite strain-related radiosensitivity to cancer and non-cancer pathologies. Altogether, our results showed lack of dose-rate-related effects and marked influence of genetic background on the radiosensitivity of Ptch1+/-mice, supporting a major contribution of individual sensitivity to radiation risk in the population.


Asunto(s)
Meduloblastoma/etnología , Neoplasias Inducidas por Radiación/etiología , Animales , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Antecedentes Genéticos , Humanos , Cristalino/efectos de la radiación , Ratones Endogámicos C57BL , Neurogénesis , Tolerancia a Radiación , Irradiación Corporal Total
2.
Radiat Res ; 197(1): 22-35, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33857324

RESUMEN

One harmful long-term effect of ionizing radiation is cataract development. Recent studies have been focused on elucidating the mechanistic pathways involved in this pathogenesis. Since accumulating evidence has established a role of microRNAs in ocular diseases, including cataract, the goal of this work was to determine the microRNA signature of the mouse lens, at short time periods postirradiation, to understand the mechanisms related to radio-induced cataractogenesis. To evaluate the differences in the microRNA profiles, 10-week-old Patched1 heterozygous (Ptch1+/-) mice, bred onto two different genetic backgrounds (CD1 and C57Bl/6J), received whole-body 2 Gy γ-ray irradiation, and 24 h later lenses were collected. Next-generation sequencing and bioinformatics analysis revealed that genetic background markedly influenced the list of the deregulated microRNAs and the mainly predicted perturbed biological functions of 2 Gy irradiated Ptch1+/- mouse lenses. We identified a subset of microRNAs with a contra-regulated expression between strains, with a key role in regulating Toll-like receptor (TLR)-signaling pathways. Furthermore, a detailed analysis of miRNome data showed a completely different DNA damage response in mouse lenses 24 h postirradiation, mainly mediated by a marked upregulation of p53 signaling in Ptch1+/-/C57Bl/6J lenses that was not detected on a CD1 background. We propose a strict interplay between p53 and TLR signaling in Ptch1+/-/C57Bl/6J lenses shortly after irradiation that could explain both the resistance of this strain to developing lens opacities and the susceptibility of CD1 background to radiation-induced cataractogenesis through activation of epithelial-mesenchymal transition.


Asunto(s)
Catarata/etiología , Cristalino/efectos de la radiación , Animales , Daño del ADN/efectos de la radiación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Antecedentes Genéticos , Humanos , Ratones Endogámicos C57BL , MicroARNs , Receptor Patched-1/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Irradiación Corporal Total
3.
DNA Repair (Amst) ; 74: 70-79, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30606609

RESUMEN

DSBs are harmful lesions produced through endogenous metabolism or by exogenous agents such as ionizing radiation, that can trigger genomic rearrangements. We have recently shown that exposure to 2 Gy of X-rays has opposite effects on the induction of Shh-dependent MB in NHEJ- and HR-deficient Ptch1+/- mice. In the current study we provide a comprehensive link on the role of HR/NHEJ at low doses (0.042 and 0.25 Gy) from the early molecular changes through DNA damage processing, up to the late consequences of their inactivation on tumorigenesis. Our data indicate a prominent role for HR in genome stability, by preventing spontaneous and radiation-induced oncogenic damage in neural precursors of the cerebellum, the cell of origin of MB. Instead, loss of DNA-PKcs function increased DSBs and apoptosis in neural precursors of the developing cerebellum, leading to killing of tumor initiating cells, and suppression of MB tumorigenesis in DNA-PKcs-/-/Ptch1+/- mice. Pathway analysis demonstrates that DNA-PKcs genetic inactivation confers a remarkable radiation hypersensitivity, as even extremely low radiation doses may deregulate many DDR genes, also triggering p53 pathway activation and cell cycle arrest. Finally, by showing that DNA-PKcs inhibition by NU7441 radiosensitizes human MB cells, our in vitro findings suggest the inclusion of MB in the list of tumors beneficiating from the combination of radiotherapy and DNA-PKcs targeting, holding promise for clinical translation.


Asunto(s)
Neoplasias Cerebelosas/genética , Reparación del ADN/efectos de la radiación , Meduloblastoma/genética , Neoplasias Inducidas por Radiación/genética , Receptor Patched-1/deficiencia , Receptor Patched-1/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/efectos de la radiación , Línea Celular Tumoral , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/terapia , Daño del ADN , Reparación del ADN por Unión de Extremidades/efectos de la radiación , ADN Helicasas/genética , Proteína Quinasa Activada por ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Relación Dosis-Respuesta en la Radiación , Recombinación Homóloga/efectos de la radiación , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patología , Meduloblastoma/terapia , Ratones , Terapia Molecular Dirigida , Mutación , Neoplasias Inducidas por Radiación/metabolismo , Neoplasias Inducidas por Radiación/patología , Neoplasias Inducidas por Radiación/terapia , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Riesgo , Rayos X/efectos adversos
4.
Radiat Prot Dosimetry ; 183(1-2): 151-155, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30520994

RESUMEN

The advent of new 'omics' techniques determined a massive boost in the measurement of the whole spectra of molecules within cells, favoring promising new radiobiological studies at low doses. The main aim of this work was to assess the radiation-induced perturbations of miRNA profiles and their temporal dynamics. Human Umbilical Vein Endothelial Cells were irradiated with low doses of γ-rays. At different time points post-irradiation, cells were harvested and miRNAs isolated. A full mapping of the miRNA sequences via Next-Generation-Sequencing analysis was performed followed by bioinformatic analyses. Pathway enrichment analyses on the differentially expressed miRNAs focused both on the averaged effects of different doses over the 24-h experiment and on the altered temporal dynamics of the miRNA profiles. These complementary analyses provided a picture of the dose- and time-dependent miRNAs responses, allowing to better explore the candidate biomarkers linked to radiation exposures and their corresponding pathways and functions.


Asunto(s)
MicroARNs/efectos de la radiación , Venas Umbilicales/citología , Biomarcadores/análisis , Biología Computacional , Relación Dosis-Respuesta en la Radiación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Factores de Tiempo , Rayos X
5.
Radiat Res ; 183(4): 417-31, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25844944

RESUMEN

The spatial distribution of radiation-induced DNA breaks within the cell nucleus depends on radiation quality in terms of energy deposition pattern. It is generally assumed that the higher the radiation linear energy transfer (LET), the greater the DNA damage complexity. Using a combined experimental and theoretical approach, we examined the phosphorylation-dephosphorylation kinetics of radiation-induced γ-H2AX foci, size distribution and 3D focus morphology, and the relationship between DNA damage and cellular end points (i.e., cell killing and lethal mutations) after exposure to gamma rays, protons, carbon ions and alpha particles. Our results showed that the maximum number of foci are reached 30 min postirradiation for all radiation types. However, the number of foci after 0.5 Gy of each radiation type was different with gamma rays, protons, carbon ions and alpha particles inducing 12.64 ± 0.25, 10.11 ± 0.40, 8.84 ± 0.56 and 4.80 ± 0.35 foci, respectively, which indicated a clear influence of the track structure and fluence on the numbers of foci induced after a dose of 0.5 Gy for each radiation type. The γ-H2AX foci persistence was also dependent on radiation quality, i.e., the higher the LET, the longer the foci persisted in the cell nucleus. The γ-H2AX time course was compared with cell killing and lethal mutation and the results highlighted a correlation between cellular end points and the duration of γ-H2AX foci persistence. A model was developed to evaluate the probability that multiple DSBs reside in the same gamma-ray focus and such probability was found to be negligible for doses lower than 1 Gy. Our model provides evidence that the DSBs inside complex foci, such as those induced by alpha particles, are not processed independently or with the same time constant. The combination of experimental, theoretical and simulation data supports the hypothesis of an interdependent processing of closely associated DSBs, possibly associated with a diminished correct repair capability, which affects cell killing and lethal mutation.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Fibroblastos/efectos de la radiación , Histonas/metabolismo , Transferencia Lineal de Energía , Muerte Celular/efectos de la radiación , Línea Celular , Relación Dosis-Respuesta en la Radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Cinética , Mutación/efectos de la radiación , Fosforilación/efectos de la radiación
6.
Curr Mol Med ; 12(5): 613-24, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22452594

RESUMEN

A long-held dogma in radiation biology has been that the biological effects of exposure to ionizing radiation occur as a result of damage in directly irradiated cells and that no effect would occur in neighboring unirradiated cells. This paradigm has been frequently challenged by reports of radiation effects in unirradiated or 'bystander' cells receiving signals from directly irradiated cells, an issue that may have substantial impact on radiation risk assessment and development of radiation-based therapies. Radiation-induced bystander effects have been shown in single-cell systems in vitro for an array of cancer relevant endpoints, and may trigger damage in more complex 3-D tissue systems. They may be mediated by soluble factors released by irradiated cells into the extracellular environment and/or by the passage of mediator molecules through gap-junction intercellular communication. To date, evidence that radiation-associated bystander or abscopal responses are effectual in vivo has been limited, but new data suggest that they may significantly affect tumor development in susceptible mouse models. Further understanding of how the signal/s is transmitted to unirradiated cells and tissues and how it provokes long-range and significant responses is crucial. By summarizing the existing evidence of radiation induced bystander-like effects in various systems with emphasis on in vivo findings, we will discuss the potential mechanisms involved in these observations and how effects in bystander cells contribute to uncertainties in assessing cancer risks associated with radiation exposure.


Asunto(s)
Efecto Espectador/fisiología , Radiación Ionizante , Animales , Comunicación Celular , Daño del ADN/efectos de la radiación , Humanos , Neoplasias/etiología
7.
Oncogene ; 30(45): 4601-8, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21602884

RESUMEN

Ionizing radiation is a genotoxic agent and human carcinogen. Recent work has questioned long-held dogmas by showing that cancer-associated genetic alterations occur in cells and tissues not directly exposed to radiation, questioning the robustness of the current system of radiation risk assessment. In vitro, diverse mechanisms involving secreted soluble factors, gap junction intercellular communication (GJIC) and oxidative metabolism are proposed to mediate these indirect effects. In vivo, the mechanisms behind long-range 'bystander' responses remain largely unknown. Here, we investigate the role of GJIC in propagating radiation stress signals in vivo, and in mediating radiation-associated bystander tumorigenesis in mouse central nervous system using a mouse model in which intercellular communication is downregulated by targeted deletion of the connexin43 (Cx43) gene. We show that GJIC is critical for transmission of oncogenic radiation damage to the non-targeted cerebellum, and that a mechanism involving adenosine triphosphate release and upregulation of Cx43, the major GJIC constituent, regulates transduction of oncogenic damage to unirradiated tissues in vivo. Our data provide a novel hypothesis for transduction of distant bystander effects and suggest that the highly branched nervous system, similar to the vascular network, has an important role.


Asunto(s)
Adenosina Trifosfato/metabolismo , Efecto Espectador/efectos de la radiación , Transformación Celular Neoplásica/genética , Neoplasias Cerebelosas/genética , Conexina 43/metabolismo , Daño del ADN/genética , Neoplasias Inducidas por Radiación/genética , Animales , Cerebelo/metabolismo , Cerebelo/efectos de la radiación , Conexina 43/genética , Uniones Comunicantes/metabolismo , Uniones Comunicantes/efectos de la radiación , Ratones , Dosis de Radiación , Eliminación de Secuencia/efectos de la radiación , Transducción de Señal/efectos de la radiación
8.
Oncogene ; 30(47): 4740-9, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21602895

RESUMEN

Heterozygous Patched1 (Ptc1(+/-)) mice are prone to medulloblastoma (MB), and exposure of newborn mice to ionizing radiation dramatically increases the frequency and shortens the latency of MB. In Ptc1(+/-) mice, MB is characterized by loss of the normal remaining Ptc1 allele, suggesting that genome rearrangements may be key events in MB development. Recent evidence indicates that brain tumors may be linked to defects in DNA-damage repair processes, as various combinations of targeted deletions in genes controlling cell-cycle checkpoints, apoptosis and DNA repair result in MB in mice. Non-homologous end joining (NHEJ) and homologous recombination (HR) contribute to genome stability, and deficiencies in either pathway predispose to genome rearrangements. To test the role of defective HR or NHEJ in tumorigenesis, control and irradiated Ptc1(+/-) mice with two, one or no functional Rad54 or DNA-protein kinase catalytic subunit (DNA-PKcs) alleles were monitored for MB development. We also examined the effect of Rad54 or DNA-PKcs deletion on the processing of endogenous and radiation-induced double-strand breaks (DSBs) in neural precursors of the developing cerebellum, the cells of origin of MB. We found that, although HR and NHEJ collaborate in protecting cells from DNA damage and apoptosis, they have opposite roles in MB tumorigenesis. In fact, although Rad54 deficiency increased both spontaneous and radiation-induced MB development, DNA-PKcs disruption suppressed MB tumorigenesis. Together, our data provide the first evidence that Rad54-mediated HR in vivo is important for suppressing tumorigenesis by maintaining genomic stability.


Asunto(s)
Neoplasias Cerebelosas/etiología , Reparación del ADN por Unión de Extremidades , Recombinación Homóloga , Meduloblastoma/etiología , Receptores de Superficie Celular/fisiología , Animales , Neoplasias Cerebelosas/genética , Daño del ADN , ADN Helicasas/fisiología , Proteína Quinasa Activada por ADN/fisiología , Inestabilidad Genómica , Pérdida de Heterocigocidad , Meduloblastoma/genética , Ratones , Proteínas Nucleares/fisiología , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...