Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Clin Epigenetics ; 16(1): 136, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358792

RESUMEN

Osteosarcoma (OS) is the most frequent primary malignant bone tumour, whose heterogeneity represents a major challenge for common antitumour therapies. Inflammatory cytokines are known to be necessary for OS progression. Therefore, to optimise therapy, it is important to discover reliable biomarkers by identifying the mechanism generating OS and investigating the inflammatory pathways that support the undifferentiated state. In this work, we highlight the differences of epigenetic activities of IL-1ß and TNFα, and the susceptibility of TET-1 enzymatic inhibition, in tumour progression of three different OS cell lines. Investigating DNA methylation of IL-6 promoter and determining its expression, we found that TET enzymatic inhibition influences proliferation induced by inflammatory cytokines in OS cell lines. Moreover, Bobcat 339 treatment blocks IL-1ß epigenetic action on IL-6 promoter, while only partially those of TNFα as well as inhibits IL-1ß-dependent epithelial-mesenchymal transition (EMT) process, but only partially those of TNFα. In conclusion, this work highlights that IL-1ß and TNFα have different effects on DNA demethylation in OS cell lines, making DNA methylation a potential biomarker of disease. Specifically, in IL-1ß treatment, TET-1 inhibition completely blocks tumour progression, while in TNFα actions, it is only partially effective. Given that these two inflammatory pathways can be therapeutic targets for treating these tumours, knowledge of their distinct epigenetic behaviours can be useful for developing precise and specific therapeutic strategies for this disease.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Interleucina-1beta , Osteosarcoma , Proteínas Proto-Oncogénicas , Factor de Necrosis Tumoral alfa , Humanos , Interleucina-1beta/genética , Interleucina-1beta/farmacología , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Metilación de ADN/genética , Metilación de ADN/efectos de los fármacos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas/genética , Osteosarcoma/genética , Osteosarcoma/tratamiento farmacológico , Progresión de la Enfermedad , Regiones Promotoras Genéticas/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Oxigenasas de Función Mixta/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Interleucina-6/genética , Neoplasias Óseas/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología
2.
Biomater Adv ; 166: 214029, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39276659

RESUMEN

The gold standard treatment in anterior cruciate ligament (ACL) reconstruction involves autologous tissue transplantation, but this can have complications. Artificial grafts are an alternative, but the best option is debated. This study aimed to assess the biocompatibility and integration of a silk fibroin textile prosthesis (SF-TP) with peri-implant bone tissue and the native ACL. Twenty-six sheep underwent ACL reconstruction with SF-TP or autologous femoral fascia lata (FFL). Sheep were divided into two groups (3 and 6 months) and retrieved joints processed for histological, morphometrical and mechanical analysis. In vitro, SF-TP showed no cytotoxicity and good cell interaction up to 14 days. Histology revealed fibro-vascular tissue around SF-TP, with a progressive attempt of ligamentous-like tissue formation at 6 months. However, SF-TP group had higher joint damage scores. Micro-CT showed tunnel enlargement in SF-TP group, while FFL group had a decrease. SF-TP reconstructions had lower stiffness and strength (44 % and 64 % decrease) than those of autologous FFL reconstruction and often failed by pull-out from the bone tunnel due to tunnel enlargement. These results indicate poor osteointegration and graft motion with SF-TP, leading to joint damage/bone resorption and reduced mechanical competence. These results do not support the use of SF-TP for ACL reconstruction.

3.
Biomedicines ; 12(9)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39335565

RESUMEN

BACKGROUND: Platelets and lymphocytes levels are important in assessing systemic disorders, reflecting inflammatory and immune responses. This study investigated the relationship between blood parameters (platelet count (PLT), mean platelet volume (MPV), lymphocyte count (LINF), and platelet-to-lymphocyte ratio (PLR)) and osteoarthritis (OA) severity, considering age, sex, and body mass index (BMI). METHODS: Patients aged ≥40 years were included in this cross-sectional study and divided into groups based on knee OA severity using the Kellgren-Lawrence (KL) grading system. A logistic regression model, adjusted for confounders, evaluated the ability of PLT, MPV, LINF, and PLR to categorize OA severity. Model performance in terms of accuracy, sensitivity, and specificity was assessed using ROC curves. RESULTS: The study involved 245 OA patients (51.4% female, 48.6% male) aged 40-90 years, 35.9% with early OA (KL < 3) and 64.1% moderate/severe OA (KL ≥ 3). Most patients (60.8%) were aged ≥60 years, and BMI was <25 kg/m2 in 33.9%. The model showed that a 25-unit increase in PLR elevates the odds of higher OA levels by 1.30 times (1-unit OR = 1.011, 95% CI [1.004, 1.017], p < 0.005), while being ≥40 years old elevates the odds by 4.42 times (OR 4.42, 95% CI [2.46, 7.95], p < 0.0005). The model's accuracy was 73.1%, with 84% sensitivity, 52% specificity, and an AUC of 0.74 (95% CI [0.675, 0.805]). CONCLUSIONS: Higher PLR increases the likelihood of moderate/severe OA, suggesting that monitoring these biomarkers could aid in early detection and management of OA severity. Further research is warranted to cross-validate these results in larger populations.

4.
Biomimetics (Basel) ; 9(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39194456

RESUMEN

Understanding the microstructure of fibrous tissues, like ligaments, is crucial due to their nonlinear stress-strain behavior from unique fiber arrangements. This study introduces a new method to analyze the relationship between the microstructure and function of anterior cruciate ligaments (ACL). We tested the procedure on two ACL samples, one from a healthy individual and one from an osteoarthritis patient, using a custom tensioning device within a micro-CT scanner. The samples were stretched and scanned at various strain levels (namely 0%, 1%, 2%, 3%, 4%, 6%, 8%) to observe the effects of mechanical stress on the microstructure. The micro-CT images were processed to identify and map fibers, assessing their orientations and volume fractions. A probabilistic mathematical model was then proposed to relate the geometric and structural characteristics of the ACL to its mechanical properties, considering fiber orientation and thickness. Our feasibility test indicated differences in mechanical behavior, fiber orientation, and volume distribution between ligaments of different origins. These indicative results align with existing literature, validating the proposed methodology. However, further research is needed to confirm these preliminary observations. Overall, our comprehensive methodology shows promise for improving ACL diagnosis and treatment and for guiding the creation of tissue-engineered grafts that mimic the natural properties and microstructure of healthy tissue, thereby enhancing integration and performance in biomedical applications.

5.
Colloids Surf B Biointerfaces ; 243: 114154, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39137528

RESUMEN

This work investigated the range of substitution of two biologically relevant ions, namely Mn2+ and Co2+, into the structure of ß-tricalcium phosphate, as well as their influence on bone cells response. To this aim, ß-TCP was synthesized by solid state reaction in the presence of increasing amount of the substituent ions. The results of the X-ray diffraction analysis reveal that just limited amounts of these ions can enter into the ß-TCP structure: 15 at% and 20 at% for cobalt and manganese, respectively. Substitution provokes aggregation of the micrometric particles and reduction of the lattice constants. In particular, the dimension of the c-parameter exhibits a discontinuity at about 10 at% for both cations, although with different trend. Moreover, Rietveld refinement demonstrates a clear preference of both manganese and cobalt for the octahedral site (V). The influence of these ions on cell response was tested on osteoblast, osteoclast and endothelial cells. The results indicate that the presence of manganese promotes a good osteoblast viability, significantly enhances the expression of osteoblast key genes and the angiogenic process of endothelial cells, while inhibiting osteoclast resorption. At variance, osteoblast viability appears reduced in the presence of Co samples, on which osteoblast genes reach higher expression than on ß-TCP just in a few cases. On the other hand, the results clearly show that cobalt significantly stimulates the angiogenic process and inhibits osteoclast resorption.


Asunto(s)
Fosfatos de Calcio , Cobalto , Manganeso , Osteoblastos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Manganeso/química , Manganeso/farmacología , Cobalto/química , Cobalto/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/metabolismo , Supervivencia Celular/efectos de los fármacos , Humanos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/citología , Difracción de Rayos X , Animales , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratones
6.
J Clin Med ; 13(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064177

RESUMEN

Background: Retrograde Drilling (RD) is a surgical technique employed for osteochondral lesions of the talus (OCLTs) to reach the subchondral bone lesion from behind, thus preserving cartilage integrity. The aim of the present pilot study was to set up an in vitro model of OCLTs to evaluate the regenerative potential of biological approaches that could be associated with the RD technique. Methods: For this purpose, an OCLT was created in human osteochondral specimens, to try to mimic the RD technique, and to compare the regenerative potential of two biological treatments. For this purpose, three groups of treatments were performed in vitro: (1) no treatment (empty defect); (2) autologous bone graft (ABG); (3) hyaluronic membrane enriched with autologous bone marrow cells. Tissue viability; production of Collagen I and II, Vascular Endothelial Growth Factor, and Aggrecan; and histological and microCT evaluations were performed after 30 days of culture in normal culture conditions. Results: It was observed that Group 3 showed the highest viability, and Group 2 showed the highest protein production. From a histological and microtomographic point of view, it was possible to appreciate the structure of the morcellized bone with which the defect of Group 2 was filled, while it was not yet possible to observe the deposition of mineralized tissue in Group 3. Conclusions: To conclude, this pilot study shows the feasibility of an alternative in vitro model to evaluate and compare the regenerative potential of two biological scaffolds, trying to mimic the RD technique as much as possible. The tissues remained vital for up to 4 weeks and both ABG and hyaluronic acid-based scaffolds stimulated the release of proteins linked to regenerative processes in comparison to the empty defect group.

7.
Biomater Adv ; 163: 213968, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059113

RESUMEN

Strontium, cobalt, and manganese ions are present in the composition of bone and useful for bone metabolism, even when combined with calcium phosphate in the composition of biomaterials. Herein we explored the possibility to include these ions in the composition of apatitic materials prepared through the cementitious reaction between ion-substituted calcium phosphate dibasic dihydrate, CaHPO4·2H2O (DCPD) and tetracalcium phosphate, Ca4(PO4)2O (TTCP). The results of the chemical, structural, morphological and mechanical characterization indicate that cobalt and manganese exhibit a greater delaying effect than strontium (about 15 at.%) on the cementitious reaction, even though they are present in smaller amounts within the materials (about 0.8 and 4.5 at.%, respectively). Furthermore, the presence of the foreign ions in the apatitic materials leads to a slight reduction of porosity and to enhancement of compressive strength. The results of biological tests show that the presence of strontium and manganese, as well as calcium, in the apatitic materials cultured in direct contact with human mesenchymal stem cells (hMSCs) stimulates their viability and activity. In contrast, the apatitic material containing cobalt exhibits a lower metabolic activity. All the materials have a positive effect on the expression of Vascular Endothelial Growth Factor (VEGF) and Von Willebrand Factor (vWF). Moreover, the apatitic material containing strontium induces the most significant reduction in the differentiation of preosteoclasts into osteoclasts, demonstrating not only osteogenic and angiogenic properties, but also ability to regulate bone resorption.


Asunto(s)
Regeneración Ósea , Cobalto , Manganeso , Células Madre Mesenquimatosas , Osteogénesis , Estroncio , Estroncio/farmacología , Estroncio/química , Cobalto/química , Humanos , Osteogénesis/efectos de los fármacos , Manganeso/química , Manganeso/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Regeneración Ósea/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Supervivencia Celular/efectos de los fármacos , Angiogénesis
8.
J Funct Biomater ; 15(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057292

RESUMEN

To endow an implant surface with enhanced properties to ensure an appropriate seal with the host tissue for inflammation/infection resistance, next-generation bone implant collagen-polyphenol nanolayers were built on conventional titanium surfaces through a multilayer approach. X-ray Photoelectron Spectroscopy (XPS) analysis was performed to investigate the chemical arrangement of molecules within the surface layer and to provide an estimate of their thickness. A short-term (2 and 4 weeks) in vivo test of bone implants in a healthy rabbit model was performed to check possible side effects of the soft surface layer on early phases of osteointegration, leading to secondary stability. Results show the building up of the different nanolayers on top of titanium, resulting in a final composite collagen-polyphenol surface and a layer thickness of about 10 nm. In vivo tests performed on machined and state-of-the-art microrough titanium implants do not show significant differences between coated and uncoated samples, as the surface microroughness remains the main driver of bone-to-implant contact. These results confirm that the surface nanolayer does not interfere with the onset and progression of implant osteointegration and prompt the green light for specific investigations of the potential merits of this bioactive coating as an enhancer of the device/tissue seal.

9.
Front Bioeng Biotechnol ; 12: 1412584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055342

RESUMEN

Introduction: The development of reliable treatments for infected or potentially infected bone loss resulting from open fractures and non-unions is extremely urgent, especially to reduce the prolonged courses of antimicrobial therapy to which affected patients are subjected. Numerous bone graft substitutes have been used over the years, but there are currently no effective solutions to treat critical bone loss, especially in the presence of infection. The present study evaluated the use of the biomorphic calcium phosphate bone scaffold b. Bone™, based on a next-generation resorbable biomimetic biomaterial, in bone reconstruction surgery in cases of infection. Methods: Using an "in vitro 3D bone fracture model" to predict the behavior of this drug delivery system during critical bone loss at an infected (or potentially infected) site, the effects of scaffolds loaded with gentamicin or vancomycin on the viability and differentiation capacity of human mesenchymal stem cells (hMSCs) were evaluated. Results: This scaffold, when loaded with gentamicin or vancomycin, exhibits a typical drug release curve that determines the inhibitory effects on the growth of Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli, as well as relative biofilm formation. Discussion: The study demonstrates that b.bone scaffolds can effectively address key challenges in orthopedic surgery and patient care by inhibiting bacterial growth and biofilm formation through rapid, potent antibiotic release, reducing the risk of treatment failure due to resistance, and providing a promising solution for bone infections and improved patient outcomes. Future studies could explore the combination of different antibiotics on these scaffolds for more tailored and effective treatments against post-traumatic osteomyelitis pathogens.

10.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892069

RESUMEN

Aging comes with the loss of muscle and bone mass, leading to a condition known as osteosarcopenia. Circulating, cellular, and tissue biomarkers research for osteosarcopenia is relatively scarce and, currently, no established biomarkers exist. Here we find that osteosarcopenic patients exhibited elevated basophils and TNFα levels, along with decreased aPPT, PT/INR, IL15, alpha-Klotho, DHEA-S, and FGF-2 expression and distinctive bone and muscle tissue micro-architecture and biomarker expressions. They also displayed an increase in osteoclast precursors with a concomitant imbalance towards spontaneous osteoclastogenesis. Similarities were noted with osteopenic and sarcopenic patients, including a lower neutrophil percentage and altered cytokine expression. A linear discriminant analysis (LDA) on models based on selected biomarkers showed a classification accuracy in the range of 61-78%. Collectively, our data provide compelling evidence for novel biomarkers for osteosarcopenia that may hold potential as diagnostic tools to promote healthy aging.


Asunto(s)
Biomarcadores , Sarcopenia , Humanos , Biomarcadores/sangre , Sarcopenia/metabolismo , Sarcopenia/sangre , Sarcopenia/patología , Proyectos Piloto , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Citocinas/metabolismo , Citocinas/sangre , Osteoclastos/metabolismo , Huesos/metabolismo , Huesos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...