Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 1790: 41-50, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29858782

RESUMEN

Bioluminescence imaging is a powerful, broadly utilized method for noninvasive imaging studies in cell-based assays and small animal models of normal physiology and multiple diseases. In combination with molecular engineering of cells and entire organisms using luciferase enzymes, bioluminescence imaging has enabled novel applications including studies of protein-protein interactions, ligand-receptor interactions, cell trafficking, and drug targeting in mouse models. We describe use of a novel luciferase enzyme derived from Oplophorus gracilirostris, NanoLuc, in cell-based assays bioluminescence imaging of tumor-bearing mice. We also combine NanoLuc with another luciferase enzyme, firefly luciferase, to image multiple signal transduction events in one imaging session.


Asunto(s)
Luciferasas de Luciérnaga/metabolismo , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Imagen Molecular/métodos , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Decápodos/enzimología , Femenino , Humanos , Luciferasas de Luciérnaga/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Sci Rep ; 8(1): 244, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321615

RESUMEN

Isolation of tumor-initiating cells currently relies on markers that do not reflect essential biologic functions of these cells. We proposed to overcome this limitation by isolating tumor-initiating cells based on enhanced migration, a function tightly linked to tumor-initiating potential through epithelial-to-mesenchymal transition (EMT). We developed a high-throughput microfluidic migration platform with automated cell tracking software and facile recovery of cells for downstream functional and genetic analyses. Using this device, we isolated a small subpopulation of migratory cells with significantly greater tumor formation and metastasis in mouse models. Whole transcriptome sequencing of migratory versus non-migratory cells from two metastatic breast cancer cell lines revealed a unique set of genes as key regulators of tumor-initiating cells. We focused on phosphatidylserine decarboxylase (PISD), a gene downregulated by 8-fold in migratory cells. Breast cancer cells overexpressing PISD exhibited reduced tumor-initiating potential in a high-throughput microfluidic mammosphere device and mouse xenograft model. PISD regulated multiple aspects of mitochondria, highlighting mitochondrial functions as therapeutic targets against cancer stem cells. This research establishes not only a novel microfluidic technology for functional isolation of tumor-initiating cells regardless of cancer type, but also a new approach to identify essential regulators of these cells as targets for drug development.


Asunto(s)
Carboxiliasas/metabolismo , Separación Celular , Técnicas Analíticas Microfluídicas , Células Madre Neoplásicas/metabolismo , Animales , Carboxiliasas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Separación Celular/métodos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Dispositivos Laboratorio en un Chip , Ratones , Mitocondrias/metabolismo , Fenotipo , Transcriptoma
3.
Curr Protoc Cell Biol ; 77: 21.12.1-21.12.12, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29227553

RESUMEN

Caspase-3 is a proteolytic enzyme that functions as a key effector in apoptotic cell death. Determining activity of caspase-3 provides critical information about cancer cell viability and response to treatment. To measure apoptosis in intact cells and living mice, a fluorescence imaging reporter that detects caspase-3 activity by Förster resonance energy transfer (FRET) was used. Changes in FRET by fluorescence lifetime imaging microscopy (FLIM) were measured. Unlike FRET measurements based on fluorescence intensity, lifetime measurements are independent of reporter concentration and scattering of light in tissue, making FLIM a robust method for imaging in 3D environments. Apoptosis of breast cancer cells in 2D culture, spheroids, and in vivo murine breast tumor xenografts in response to a variety of genetic and pharmacologic methods implicated in apoptosis of cancer cells was studied. This approach for quantifying apoptosis of cancer cells is based on caspase-3 activity at single-cell resolution using FLIM. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Apoptosis , Neoplasias de la Mama/patología , Caspasa 3/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Ratones
4.
Tomography ; 2(2): 146-157, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27478871

RESUMEN

Malignant cells from breast cancer and other common cancers such as prostate and melanoma may persist in bone marrow as quiescent, non-dividing cells that remain viable for years or even decades before resuming proliferation to cause recurrent disease. This phenomenon, referred to clinically as tumor dormancy, poses tremendous challenges to curing patients with breast cancer. Quiescent tumor cells resist chemotherapy drugs that predominantly target proliferating cells, limiting success of neo-adjuvant and adjuvant therapies. We recently developed a 3D spheroid model of quiescent breast cancer cells in bone marrow for mechanistic and drug testing studies. We combined this model with optical imaging methods for label-free detection of cells preferentially utilizing glycolysis versus oxidative metabolism to investigate the metabolic state of co-culture spheroids with different bone marrow stromal and breast cancer cells. Through imaging and biochemical assays, we identified different metabolic states of bone marrow stromal cells that control metabolic status and flexibilities of co-cultured breast cancer cells. We tested metabolic stresses and targeted inhibition of specific metabolic pathways to identify approaches to preferentially eliminate quiescent breast cancer cells from bone marrow environments. These studies establish an integrated imaging approach to analyze metabolism in complex tissue environments to identify new metabolically-targeted cancer therapies.

5.
Tomography ; 1(2): 115-124, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26771007

RESUMEN

Genetically-encoded fluorescence resonance energy transfer (FRET) reporters are powerful tools to analyze cell signaling and function at single cell resolution in standard two-dimensional cell cultures, but these reporters rarely have been applied to three-dimensional environments. FRET interactions between donor and acceptor molecules typically are determined by changes in relative fluorescence intensities, but wavelength-dependent differences in absorption of light complicate this analysis method in three-dimensional settings. Here we report fluorescence lifetime imaging microscopy (FLIM) with phasor analysis, a method that displays fluorescence lifetimes on a pixel-wise basis in real time, to quantify apoptosis in breast cancer cells stably expressing a genetically encoded FRET reporter. This microscopic imaging technology allowed us to identify treatment-induced apoptosis in single breast cancer cells in environments ranging from two-dimensional cell culture, spheroids with cancer and bone marrow stromal cells, and living mice with orthotopic human breast cancer xenografts. Using this imaging strategy, we showed that combined metabolic therapy targeting glycolysis and glutamine pathways significantly reduced overall breast cancer metabolism and induced apoptosis. We also determined that distinct subpopulations of bone marrow stromal cells control resistance of breast cancer cells to chemotherapy, suggesting heterogeneity of treatment responses of malignant cells in different bone marrow niches. Overall, this study establishes FLIM with phasor analysis as an imaging tool for apoptosis in cell-based assays and living mice, enabling real-time, cellular-level assessment of treatment efficacy and heterogeneity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...