RESUMEN
A common animal model of muscle pathology following rotator cuff tear (RCT) is a tenotomy of the supraspinatus and infraspinatus, often combined with neurotomy of the suprascapular nerve, which induces a more robust atrophy response than tenotomy alone. However, the utility of this model depends on its similarity to human muscle pathology post-RCT, both in terms of the disease phenotype and mechanisms of muscle atrophy and fatty infiltration. Given the clinical prevalence of nerve injury is low and the muscular response to denervation is distinct from mechanical unloading in other models, an understanding of the biological influence of the nerve injury is critical for interpreting data from this RCT model. We evaluated the individual and combined effect of tenotomy and neurotomy across multiple biological scales, in a robust time-series in the mouse supraspinatus. Muscle composition, histological, and gene expression data related to muscle atrophy, degeneration-regeneration, fatty infiltration, and fibrosis were evaluated. Broadly, we found tenotomy alone caused small, transient changes in these pathological features, which resolved over the course of the study, while neurotomy alone caused a significant fatty atrophy phenotype. The dual injury group had a similar fatty atrophy phenotype to the neurotomy group, though the addition of tenotomy did marginally enhance the fat and connective tissue. Overall, these results suggest the most clinically relevant injury model, tenotomy alone, does not produce a clinically relevant phenotype. The dual injury model partially recapitulates the human condition, but it does so through a nerve injury, which is not well justified clinically.
Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Atrofia Muscular , Lesiones del Manguito de los Rotadores , Tenotomía , Animales , Lesiones del Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/patología , Atrofia Muscular/etiología , Manguito de los Rotadores/cirugía , Manguito de los Rotadores/patología , Manguito de los Rotadores/inervación , Masculino , RatonesRESUMEN
Introduction: Rotator cuff tears are prevalent in the population above the age of 60. The disease progression leads to muscle atrophy, fibrosis, and fatty infiltration, which is not improved upon with surgical repair, highlighting the need to better understand the underlying biology impairing more favorable outcomes. Methods: In this study, we collected supraspinatus muscle tissue from 6 month old female rabbits who had undergone unilateral tenotomy for 8 weeks at 1, 2, 4, or 8 weeks post-repair (n = 4/group). RNA sequencing and enrichment analyses were performed to identify a transcriptional timeline of rotator cuff muscle adaptations and related morphological sequelae. Results: There were differentially expressed (DE) genes at 1 (819 up/210 down), 2 (776/120), and 4 (63/27) weeks post-repair, with none at 8 week post-repair. Of the time points with DE genes, there were 1092 unique DE genes and 442 shared genes, highlighting that there are changing processes in the muscle at each time point. Broadly, 1-week post-repair differentially expressed genes were significantly enriched in pathways of metabolism and energetic activity, binding, and regulation. Many were also significantly enriched at 2 weeks, with the addition of NIF/NF-kappaB signaling, transcription in response to hypoxia, and mRNA stability alongside many additional pathways. There was also a shift in transcriptional activity at 4 weeks post-repair with significantly enriched pathways for lipids, hormones, apoptosis, and cytokine activity, despite an overall decrease in the number of differentially expressed genes. At 8 weeks post-repair there were no DE genes when compared to control. These transcriptional profiles were correlated with the histological findings of increased fat, degeneration, and fibrosis. Specifically, correlated gene sets were enriched for fatty acid metabolism, TGF-B-related, and other pathways. Discussion: This study identifies the timeline of transcriptional changes in muscle after RC repair, which by itself, does not induce a growth/regenerative response as desired. Instead, it is predominately related to metabolism/energetics changes at 1 week post-repair, unclear or asynchronous transcriptional diversity at 2 weeks post-repair, increased adipogenesis at 4 weeks post-repair, and a low transcriptional steady state or a dysregulated stress response at 8 weeks post-repair.
RESUMEN
The rabbit supraspinatus is a useful translational model for rotator cuff (RC) repair because it recapitulates muscle atrophy and fat accumulation observed in humans after a chronic tear (the "first hit"). However, a timeline of RC tissue response after repair, especially with regard to recent evidence of muscle degeneration and lack of regeneration, is currently unavailable. Thus, the purpose of this study was to characterize the progression of muscle and fat changes over time after the repair of a chronic RC tear in the rabbit model. Two rounds of experiments were conducted in 2017-2018 and 2019-2020 with N = 18 and 16 skeletally mature New Zealand White rabbits, respectively. Animals underwent left supraspinatus tenotomy with repair 8 weeks later. The unoperated right shoulder served as control. The rabbits were sacrificed at 1-, 2-, 4-, and 8-weeks post-repair for histological and biochemical analysis. Atrophy, measured by fiber cross-sectional area and muscle mass, was greatest around 2 weeks after repair. Active muscle degeneration peaked at the same time, involving 8% of slide areas. There was no significant regeneration at any timepoint. Fat accumulation and fibrosis were significantly increased across all time points compared to contralateral. Statement of Clinical Significance: These results demonstrate model reproducibility and a "second hit" phenomenon of repair-induced muscle atrophy and degeneration which partially recovers after a short time, while increased fat and fibrosis persist.
RESUMEN
Rotator cuff (RC) tears present a treatment challenge due to muscle atrophy and degeneration, fatty infiltration, and fibrosis. The purpose of this study was to generate a high time-resolution model of RC tear in rabbits and to characterize the progression of architectural and histological changes. Thirty-five female New Zealand White rabbits (age: 6 months) underwent left supraspinatus tenotomy. Five rabbits were used to evaluate immediate muscle architectural changes. The remaining 30 rabbits underwent right shoulder sham surgery and sacrifice at 1, 2, 4, 8, or 16 weeks. Histology was used to quantify muscle fiber cross-sectional area (CSA), muscle degeneration and regeneration, and fat localized to inter- versus intrafascicular regions. Muscle fiber CSA decreased by 26.5% compared to sham at 16 weeks (effect of treatment, p < 0.0001). Muscle degeneration increased after tenotomy (effect of treatment, p = 0.0006) without any change in regeneration. Collagen and fat content increased by 4 weeks and persisted through 16 weeks. Interfascicular fat was increased at all time points, but intrafascicular fat was increased only at 1, 4, and 16 weeks posttenotomy. Intrafascicular fat adjacent to degenerating muscle fibers increased as well (effect of treatment, p < 0.0001; effect of time, p = 0.0102). Statement of clinical relevance: Rabbit supraspinatus tenotomy recapitulates key features of the pathophysiology of human RC tears, including muscle atrophy and degeneration, lack of regeneration, fat accumulation, and fibrosis.
Asunto(s)
Lesiones del Manguito de los Rotadores , Tejido Adiposo/patología , Animales , Femenino , Fibrosis , Atrofia Muscular/patología , Conejos , Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/patologíaRESUMEN
[This corrects the article DOI: 10.3389/fphys.2021.707116.].
RESUMEN
Rotator cuff (RC) tears are prevalent in the population above the age of 60. The disease progression leads to muscle atrophy, fibrosis, and fatty infiltration in the chronic state, which is not improved with intervention or surgical repair. This highlights the need to better understand the underlying dysfunction in muscle after RC tendon tear. Contemporary studies aimed at understanding muscle pathobiology after RC tear have considered transcriptional data in mice, rats and sheep models at 2-3 time points (1 to 16 weeks post injury). However, none of these studies observed a transition or resurgence of gene expression after the initial acute time points. In this study, we collected rabbit supraspinatus muscle tissue with high temporal resolution (1, 2, 4, 8, and 16 weeks) post-tenotomy (n = 6/group), to determine if unique, time-dependent transcriptional changes occur. RNA sequencing and analyses were performed to identify a transcriptional timeline of RC muscle changes and related morphological sequelae. At 1-week post-tenotomy, the greatest number of differentially expressed genes was observed (1,069 up/873 down) which decreases through 2 (170/133), 4 (86/41), and 8 weeks (16/18), followed by a resurgence and transition of expression at 16 weeks (1,421/293), a behavior which previously has not been captured or reported. Broadly, 1-week post-tenotomy is an acute time point with expected immune system responses, catabolism, and changes in energy metabolism, which continues into 2 weeks with less intensity and greater contribution from mitochondrial effects. Expression shifts at 4 weeks post-tenotomy to fatty acid oxidation, lipolysis, and general upregulation of adipogenesis related genes. The effects of previous weeks' transcriptional dysfunction present themselves at 8 weeks post-tenotomy with enriched DNA damage binding, aggresome activity, extracellular matrix-receptor changes, and significant expression of genes known to induce apoptosis. At 16 weeks post-tenotomy, there is a range of enriched pathways including extracellular matrix constituent binding, mitophagy, neuronal activity, immune response, and more, highlighting the chaotic nature of this time point and possibility of a chronic classification. Transcriptional activity correlated significantly with histological changes and were enriched for biologically relevant pathways such as lipid metabolism. These data provide platform for understanding the biological mechanisms of chronic muscle degeneration after RC tears.
RESUMEN
Many chronic musculoskeletal conditions are associated with loss of muscle volume and quality, resulting in functional decline. While atrophy has long been implicated as the mechanism of muscle loss in these conditions, recent evidence has emerged demonstrating a degenerative phenotype of muscle loss consisting of disrupted muscle fiber membranes, infiltration of cells into muscle fibers, and as previously describer, possible replacement of muscle fibers by adipose tissue. Here, we use human lumbar spine pathology as a model system to provide a more comprehensive analysis of the morphological features of this mode of muscle loss between early and late stages of disease, including an analysis of the cell populations found in paraspinal muscle biopsies from humans with acute vs chronic lumbar spine pathology. Using longitudinal sections, we show that degeneration of muscle fibers is localized within a fiber (ie, focal), and is characterized by discontinuous or ragged membrane disruption, cellular infiltration, and apparently vacant space containing limited numbers of nuclei and hyper-contractile cell debris. Samples from patients with acute and chronic pathology demonstrate similar magnitudes of muscle degeneration, however, larger proportions of PDGFRß-positive progenitor cells and leukocytes were observed in the acute group, with no differences in myogenic cells, macrophages, or T-cells. By better understanding the cell population behaviors over the course of disease, therapies can be optimized to address the appropriate targets and timing of administration to minimize the functional consequences of muscle degeneration in lumbar spine pathology.
RESUMEN
STUDY DESIGN: Prospective observational study-basic science (Level 1). OBJECTIVE: The aim of this study was to compare expression of functional groups of genes within the atrophic, myogenic, fibrogenic, adipogenic, and inflammatory pathways between paraspinal muscle biopsies from individuals with acute and chronic lumbar spine pathology. SUMMARY OF BACKGROUND DATA: Low back pain is a complex and multifactorial condition that affects a majority of the general population annually. Changes in muscle tissue composition (i.e., fatty and fibrotic infiltration) are a common feature in individuals with lumbar spine pathology associated with low back pain, which often results in functional loss. Understanding the molecular underpinnings of these degenerative changes in different phases of disease progression may improve disease prevention and treatment specificity. METHODS: Intraoperative biopsies of the multifidus muscle were obtained from individuals undergoing surgery for acute (<6-month duration) or chronic (>6-month duration) lumbar spine pathology. Expression of 42 genes related to myogenesis, atrophy, adipogenesis, metabolism, inflammation, and fibrosis were measured in 33 samples (eight acute, 25 chronic) using qPCR, and tissue composition of fat, muscle, and fibrosis was quantified using histology. RESULTS: We found that tissue composition of the biopsies was heterogeneous, resulting in a trend toward lower RNA yields in biopsies with higher proportions of fat (r <-0.39, Pâ<â0.1). There were no significant differences in gene expression patterns for atrophy (Pâ>â0.635), adipogenesis (Pâ>â0.317), myogenesis (Pâ>â0.320), or inflammatory (Pâ>â0.413) genes after adjusting for the proportion of muscle, fat, and connective tissue. However, in the fibrogenesis pathway, we found significant upregulation of CTGF (Pâ=â0.046), and trends for upregulation of COL1A1 (Pâ=â0.061), and downregulation of MMP1 and MMP9 (Pâ=â0.061) in the chronic group. CONCLUSION: There is increased fibrogenic gene expression in individuals with chronic disease when compared to acute disease, without significant differences in atrophic, myogenic, adipogenic, or inflammatory pathways, suggesting increased efforts should be made to prevent or reverse fibrogenesis to improve patient function in this population. LEVEL OF EVIDENCE: N/A.
Asunto(s)
Vértebras Lumbares/metabolismo , Vértebras Lumbares/cirugía , Músculos Paraespinales/metabolismo , Enfermedades de la Columna Vertebral/metabolismo , Enfermedades de la Columna Vertebral/cirugía , Enfermedad Aguda , Adulto , Anciano , Enfermedad Crónica , Tejido Conectivo/metabolismo , Tejido Conectivo/patología , Tejido Conectivo/cirugía , Estudios Transversales , Femenino , Expresión Génica , Humanos , Vértebras Lumbares/patología , Masculino , Persona de Mediana Edad , Músculos Paraespinales/patología , Estudios Prospectivos , Enfermedades de la Columna Vertebral/patologíaRESUMEN
A meta-analysis of oncology papers from around the world revealed that cancer patients who lived more than 50 miles away from hospital centers routinely presented with more advanced stages of disease at diagnosis, exhibited lower adherence to prescribed treatments, presented with poorer diagnoses, and reported a lower quality of life than patients who lived nearer to care facilities. Connected health approaches-or the use of broadband and telecommunications technologies to evaluate, diagnose, and monitor patients beyond the clinic-are becoming an indispensable tool in medicine to overcome the obstacle of distance.
RESUMEN
Detrimental changes in the composition and function of rotator cuff (RC) muscles are hallmarks of RC disease progression. Previous studies have demonstrated both atrophic and degenerative muscle loss in advanced RC disease. However, the relationship between gene expression and RC muscle pathology remains poorly defined, in large part due to a lack of studies correlating gene expression to tissue composition. Therefore, the purpose of this study was to determine how tissue composition relates to gene expression in muscle biopsies from patients undergoing reverse shoulder arthroplasty (RSA). Gene expression related to myogenesis, atrophy and cell death, adipogenesis and metabolism, inflammation, and fibrosis was measured in 40 RC muscle biopsies, including 31 biopsies from reverse shoulder arthroplasty (RSA) cases that had available histology data and 9 control biopsies from patients with intact RC tendons. After normalization to reference genes, linear regression was used to identify relationships between gene expression and tissue composition. Hierarchical clustering and principal component analysis (PCA) identified unique clusters, and fold-change analysis was used to determine significant differences in expression between clusters. We found that gene expression profiles were largely dependent on muscle presence, with muscle fraction being the only histological parameter that was significantly correlated to gene expression by linear regression. Similarly, samples with histologically-confirmed muscle distinctly segregated from samples without muscle. However, two sub-groups within the muscle-containing RSA biopsies suggest distinct phases of disease, with one group expressing markers of both atrophy and regeneration, and another group not significantly different from either control biopsies or biopsies lacking muscle. In conclusion, this study provides context for the interpretation of gene expression in heterogeneous and degenerating muscle, and provides further evidence for distinct stages of RC disease in humans.
Asunto(s)
Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Lesiones del Manguito de los Rotadores/genética , Biopsia , Humanos , Músculo Esquelético/patología , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Rotator cuff (RC) muscles undergo several detrimental changes following mechanical unloading resulting from RC tendon tear. In this review, we highlight the pathological causes and consequences of mechanical alterations at the whole muscle, muscle fiber, and muscle resident cell level as they relate to RC disease progression. In brief, the altered mechanical loads associated with RC tear lead to architectural, structural, and compositional changes at the whole-muscle and muscle fiber level. At the cellular level, these changes equate to direct disruption of mechanobiological signaling, which is exacerbated by mechanically regulated biophysical and biochemical changes to the cellular and extra-cellular environment (also known as the stem cell "niche"). Together, these data have important implications for both pre-clinical models and clinical practice. In pre-clinical models, it is important to recapitulate both the atrophic and degenerative muscle loss found in humans using clinically relevant modes of injury. Clinically, understanding the mechanics and underlying biology of the muscle will impact both surgical decision-making and rehabilitation protocols, as interventions that may be good for atrophic muscle will have a detrimental effect on degenerating muscle, and vice versa. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:546-556, 2018.
Asunto(s)
Atrofia Muscular/etiología , Lesiones del Manguito de los Rotadores/fisiopatología , Manguito de los Rotadores/fisiopatología , Animales , Fenómenos Biomecánicos , Fibrosis , Homeostasis , Humanos , Leucocitos/fisiología , Células Madre Multipotentes/fisiología , Manguito de los Rotadores/metabolismo , Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/complicaciones , Lesiones del Manguito de los Rotadores/metabolismo , Lesiones del Manguito de los Rotadores/patología , Células Satélite del Músculo Esquelético/fisiologíaRESUMEN
Histological and cell-level changes in the lumbar musculature in individuals with chronic lumbar spine degenerative conditions are not well characterized. Although prior literature supports evidence of changes in fiber type and size, little information exists describing the tissue quality and biology of pathological features of muscle in this population. The purpose of this study was to quantify multifidus tissue composition and structure, inflammation, vascularity, and degeneration in individuals with chronic degenerative lumbar spine pathology. Human multifidus biopsies were acquired from 22 consecutive patients undergoing surgery for chronic degenerative lumbar spine pathology. Relative fractions of muscle, adipose, and extracellular matrix were quantified along with muscle fiber type and cross-sectional area (CSA) and markers of inflammation, vascularity, satellite cell density, and muscle degeneration. On average, multifidus biopsies contained 48.5% muscle, 11.7% adipose tissue, and 26.1% collagen tissue. Elevated inflammatory cell counts (48.5 ± 30.0 macrophages/mm2 ) and decreased vascularity (275.6 ± 69.4 vessels/mm2 ) were also observed compared to normative values. Satellite cell densities were on average 13 ± 9 cells per every 100 muscle fibers. Large fiber CSA (3,996.0 ± 1,909.2 µm2 ) and a predominance of type I fibers (61.8 ± 18.0%) were observed in addition to evidence of pathological degeneration-regeneration cycling (18.8 ± 9.4% centrally nucleated fibers, and 55.2 ± 24.2% of muscle regions containing degeneration). High levels of muscle degeneration, inflammation, and decreased vascularity were commonly seen in human multifidus biopsies of individuals with lumbar spine pathology in comparison to normative data. Evidence of active muscle degeneration suggests that changes in muscle tissue are more complex than simple atrophy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2700-2706, 2017.
Asunto(s)
Vértebras Lumbares , Músculos Paraespinales/patología , Enfermedades de la Columna Vertebral/patología , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios ProspectivosRESUMEN
BACKGROUND: Cellular remodeling in rotator cuff muscles following a massive rotator cuff tear is poorly understood. The aim of the current study was to provide histological evidence to elucidate the mode of muscle loss in advanced human rotator cuff disease and to assess tissue-level changes in relation to findings on noninvasive imaging. METHODS: Rotator cuff muscle biopsy samples were taken from the scapular fossae from 23 consecutive patients undergoing reverse total shoulder arthroplasty in order to evaluate muscle composition in severe rotator cuff disease. Markers of vascularity; inflammation; fat distribution; and muscle atrophy, degeneration, and regeneration were quantified. RESULTS: The samples primarily consisted of dense, organized connective tissue (48.2% ± 19.1%) and disorganized, loose connective tissue (36.9% ± 15.9%), with substantially smaller fractions of muscle (10.4% ± 22.0%) and fat (6.5% ± 11.6%). Only 25.8% of the biopsy pool contained any muscle fibers at all. Increased inflammatory cell counts (111.3 ± 81.5 macrophages/mm) and increased vascularization (66.6 ± 38.0 vessels/mm) were observed across biopsies. Muscle fiber degeneration was observed in 90.0% ± 15.6% of observable muscle fascicles, and the percentage of centrally nucleated muscle fibers was pathologically elevated (11.3% ± 6.3%). Fat accumulation was noted in both perifascicular (60.7% ± 41.4%) and intrafascicular (42.2% ± 33.6%) spaces, with evidence that lipid may replace contractile elements without altering muscle organization. CONCLUSIONS: Dramatic degeneration and inflammation of the rotator cuff muscles are characteristics of the most chronic and severe rotator cuff disease states, suggesting that muscle loss is more complicated than, and distinct from, the simple atrophy found in less severe cases. CLINICAL RELEVANCE: In order to address degenerative muscle loss, alternative therapeutic approaches directed at muscle regeneration must be considered if muscle function is to be restored in late-stage rotator cuff disease.
Asunto(s)
Artroplastía de Reemplazo de Hombro , Músculo Esquelético/patología , Atrofia Muscular/patología , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/cirugía , Anciano , Biopsia , Femenino , Humanos , MasculinoRESUMEN
Full thickness rotator cuff tendon (RCT) tears have long-term effects on RC muscle atrophy and fatty infiltration, with lasting damage even after surgical tendon repair. Skeletal muscle progenitor cells (SMPs) are critical for muscle repair in response to injury, but the inability of RC muscles to recover from chronic RCT tear indicates possible deficits in repair mechanisms. Here we investigated if muscle injury state was a crucial factor during human SMP expansion and differentiation ex vivo. SMPs were isolated from muscles in patients with no, partial-thickness (PT), or full-thickness (FT) RCT tears. Despite using growth factors, physiological niche stiffness, and muscle-mimetic extracellular matrix (ECM) proteins, we found that SMPs isolated from human RC muscle with RCT tears proliferated slower but fused into myosin heavy chain (MHC)-positive myotubes at higher rates than SMPs from untorn RCTs. Proteomic analysis of RC muscle tissue revealed shifts in muscle composition with pathology, as muscle from massive RCT tears had increased ECM deposition compared with no tear RC muscle. Together these data imply that the remodeled niche in a torn RCT primes SMPs not for expansion but for differentiation, thus limiting longer-term self-renewal necessary for regeneration after surgical repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1816-1823, 2017.
Asunto(s)
Células Madre Adultas/fisiología , Músculo Esquelético/fisiopatología , Lesiones del Manguito de los Rotadores/fisiopatología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Lesiones del Manguito de los Rotadores/metabolismoRESUMEN
A promising therapeutic strategy for diverse genetic disorders involves transplantation of autologous stem cells that have been genetically corrected ex vivo. A major challenge in such approaches is a loss of stem cell potency during culture. Here we describe an artificial niche for maintaining muscle stem cells (MuSCs) in vitro in a potent, quiescent state. Using a machine learning method, we identified a molecular signature of quiescence and used it to screen for factors that could maintain mouse MuSC quiescence, thus defining a quiescence medium (QM). We also engineered muscle fibers that mimic the native myofiber of the MuSC niche. Mouse MuSCs maintained in QM on engineered fibers showed enhanced potential for engraftment, tissue regeneration and self-renewal after transplantation in mice. An artificial niche adapted to human cells similarly extended the quiescence of human MuSCs in vitro and enhanced their potency in vivo. Our approach for maintaining quiescence may be applicable to stem cells isolated from other tissues.
Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Proteínas Musculares/metabolismo , Mioblastos Esqueléticos/fisiología , Mioblastos Esqueléticos/trasplante , Nicho de Células Madre/fisiología , Conservación de Tejido/métodos , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Mioblastos Esqueléticos/citología , Trasplante de Células Madre/métodos , Resultado del TratamientoRESUMEN
Rotator cuff (RC) tendon tears lead to negative structural and functional changes in the associated musculature. The structural features of muscle that predict function are termed "muscle architecture." Although the architectural features of "normal" rotator cuff muscles are known, they are poorly understood in the context of cuff pathology. The purpose of this study was to investigate the effects of tear and repair on RC muscle architecture. To this end thirty cadaveric shoulders were grouped into one of four categories based on tear magnitude: Intact, Full-thickness tear (FTT), Massive tear (MT), or Intervention if sutures or hardware were present, and key parameters of muscle architecture were measured. We found that muscle mass and fiber length decreased proportionally with tear size, with significant differences between all groups. Conversely, sarcomere number was reduced in both FTT and MT with no significant difference between these two groups, in large part because sarcomere length was significantly reduced in MT but not FTT. The loss of muscle mass in FTT is due, in part, to subtraction of serial sarcomeres, which may help preserve sarcomere length. This indicates that function in FTT may be impaired, but there is some remaining mechanical loading to maintain "normal" sarcomere length-tension relationships. However, the changes resulting from MT suggest more severe limitations in force-generating capacity because sarcomere length-tension relationships are no longer normal. The architectural deficits observed in MT muscles may indicate deeper deficiencies in muscle adaptability to length change, which could negatively impact RC function despite successful anatomical repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2089-2095, 2016.
Asunto(s)
Lesiones del Manguito de los Rotadores/patología , Sarcómeros/patología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , MasculinoRESUMEN
BACKGROUND: Community-based participatory research (CBPR) has been shown to enhance trust and engagement among community academic partners. However, the value of CBPR among hyper-researched, inner-city communities has not been evaluated adequately. The purpose of this study was to evaluate the impact of a CBPR based engagement process in an inner-city, hyper-researched, underserved community. METHODS: A qualitative process evaluation was conducted using focus groups, key informant in-depth interviews, and a brief survey to evaluate the attitudes, perceptions, beliefs, impact of, and satisfaction with the CBPR engagement process used to plan and conduct a community asset mapping project. RESULTS: Three focus groups, eight in-depth interviews, and survey responses from 31 individuals were obtained and analyzed. Findings include a sense of accomplishment and value with the engagement process, as well as a sense of tangible benefits of the process perceived by community members and academic research partners. CONCLUSIONS: CBPR may represent an effective approach to enhancing trust and community-academic collaboration even among cynical, resistant, hyper-researched, underserved communities.
Asunto(s)
Investigación Participativa Basada en la Comunidad/métodos , Relaciones Comunidad-Institución , Conducta Cooperativa , Evaluación de Programas y Proyectos de Salud/métodos , Servicios Urbanos de Salud , Actitud Frente a la Salud , Grupos Focales , Disparidades en el Estado de Salud , Disparidades en Atención de Salud , Humanos , Entrevistas como Asunto , Salud Pública , Población UrbanaRESUMEN
INTRODUCTION: Human factors workflow analyses in healthcare settings prior to technology implemented are recommended to improve workflow in ambulatory care settings. In this paper we describe how insights from a workflow analysis conducted by NIST were implemented in a software prototype developed for a Veteran's Health Administration (VHA) VAi2 innovation project and associated lessons learned. METHODS: We organize the original recommendations and associated stages and steps visualized in process maps from NIST and the VA's lessons learned from implementing the recommendations in the VAi2 prototype according to four stages: 1) before the patient visit, 2) during the visit, 3) discharge, and 4) visit documentation. NIST recommendations to improve workflow in ambulatory care (outpatient) settings and process map representations were based on reflective statements collected during one-hour discussions with three physicians. The development of the VAi2 prototype was conducted initially independently from the NIST recommendations, but at a midpoint in the process development, all of the implementation elements were compared with the NIST recommendations and lessons learned were documented. FINDINGS: Story-based displays and templates with default preliminary order sets were used to support scheduling, time-critical notifications, drafting medication orders, and supporting a diagnosis-based workflow. These templates enabled customization to the level of diagnostic uncertainty. Functionality was designed to support cooperative work across interdisciplinary team members, including shared documentation sessions with tracking of text modifications, medication lists, and patient education features. Displays were customized to the role and included access for consultants and site-defined educator teams. DISCUSSION: Workflow, usability, and patient safety can be enhanced through clinician-centered design of electronic health records. The lessons learned from implementing NIST recommendations to improve workflow in ambulatory care using an EHR provide a first step in moving from a billing-centered perspective on how to maintain accurate, comprehensive, and up-to-date information about a group of patients to a clinician-centered perspective. These recommendations point the way towards a "patient visit management system," which incorporates broader notions of supporting workload management, supporting flexible flow of patients and tasks, enabling accountable distributed work across members of the clinical team, and supporting dynamic tracking of steps in tasks that have longer time distributions.
RESUMEN
UNLABELLED: : Chronic rotator cuff (RC) tears are a common and debilitating injury, characterized by dramatic expansion of adipose tissue, muscle atrophy, and limited functional recovery. The role of adipose expansion in RC pathology is unknown; however, given the identified paracrine/endocrine regulation by other adipose depots, it likely affects tissue function outside its boundaries. Therefore, we characterized the epimuscular (EM) fat depot of the human rotator cuff, defined its response to RC tears, and evaluated its influence on myogenesis in vitro. EM fat biopsies exhibited morphological and functional features of human beige fat compared with patient-matched s.c. biopsies, which appeared whiter. The transcriptional profile of EM fat and isolated EM adipose-derived stem cells (ASCs) shifted as a function of the tear state; EM fat from intact cuffs had significantly elevated expression of the genes associated with uncoupled respiration, and the EM fat from torn cuffs had increased expression of beige-selective genes. EM ASC cocultures with human- and mouse-derived myogenic cells exhibited increased levels of myogenesis compared with s.c. cultures. Increased fusion and decreased proliferation of myogenic cells, rather than changes to the ASCs, were found to underlie this effect. Taken together, these data suggest that EM fat in the human rotator cuff is a novel beige adipose depot influenced by cuff state with therapeutic potential for promoting myogenesis in neighboring musculature. SIGNIFICANCE: Rotator cuff tears affect millions of people in the U.S.; however, current interventions are hindered by persistent muscle degeneration. This study identifies the therapeutic potential for muscle recovery in the epimuscular fat in the rotator cuff, previously considered a negative feature of the pathology, and finds that this fat is beige, rather than white. This is important for two reasons. First, the stem cells that were isolated from this beige fat are more myogenic than those from white fat, which have been the focus of stem cell-based therapies to date, suggesting epimuscular fat could be a better stem cell source to augment rotator cuff repair. Second, these beige stem cells promote myogenesis in neighboring cells in culture, suggesting the potential for this fat to be manipulated therapeutically to promote muscle recovery through secreted signals.
RESUMEN
Polyurethane shape memory polymers (SMPs) with tunable thermomechanical properties and advanced processing capabilities are synthesized, characterized, and implemented in the design of a microactuator medical device prototype. The ability to manipulate glass transition temperature (Tg ) and crosslink density in low-molecular weight aliphatic thermoplastic polyurethane SMPs is demonstrated using a synthetic approach that employs UV catalyzed thiol-ene "click" reactions to achieve postpolymerization crosslinking. Polyurethanes containing varying C=C functionalization are synthesized, solution blended with polythiol crosslinking agents and photoinitiator and subjected to UV irradiation, and the effects of number of synthetic parameters on crosslink density are reported. Thermomechanical properties are highly tunable, including glass transitions tailorable between 30 and 105 °C and rubbery moduli tailorable between 0.4 and 20 MPa. This new SMP system exhibits high toughness for many formulations, especially in the case of low crosslink density materials, for which toughness exceeds 90 MJ m(-3) at select straining temperatures. To demonstrate the advanced processing capability and synthetic versatility of this new SMP system, a laser-actuated SMP microgripper device for minimally invasive delivery of endovascular devices is fabricated, shown to exhibit an average gripping force of 1.43 ± 0.37 N and successfully deployed in an in vitro experimental setup under simulated physiological conditions.