Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Disaster Med Public Health Prep ; 17: e550, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044835

RESUMEN

OBJECTIVE: Evidence of myelosuppression has been negatively correlated with patient outcomes following cases of high dose sulfur mustard (SM) exposure. These hematologic complications can negatively impact overall immune function and increase the risk of infection and life-threatening septicemia. Currently, there are no approved medical treatments for the myelosuppressive effects of SM exposure. METHODS: Leveraging a recently developed rodent model of SM-induced hematologic toxicity, post-exposure efficacy testing of the granulocyte colony-stimulating factor drug Neupogen® was performed in rats intravenously challenged with SM. Before efficacy testing, pharmacokinetic/pharmacodynamic analyses were performed in naïve rats to identify the apparent human equivalent dose of Neupogen® for efficacy evaluation. RESULTS: When administered 1 d after SM-exposure, daily subcutaneous Neupogen® treatment did not prevent the delayed onset of hematologic toxicity but significantly accelerated recovery from neutropenia. Compared with SM controls, Neupogen®-treated animals recovered body weight faster, resolved toxic clinical signs more rapidly, and did not display transient febrility at time points generally concurrent with marked pancytopenia. CONCLUSIONS: Collectively, this work corroborates the results of a previous pilot large animal study, validates the utility of a rodent screening model, and provides further evidence for the potential clinical utility of Neupogen® as an adjunct treatment following SM exposure.


Asunto(s)
Gas Mostaza , Humanos , Ratas , Animales , Filgrastim/farmacología , Filgrastim/uso terapéutico , Gas Mostaza/toxicidad , Neutrófilos , Roedores , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico
2.
Toxicol Appl Pharmacol ; 394: 114962, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32205187

RESUMEN

Trans-resveratrol (RES) is a naturally occurring stilbene found in numerous plants and foods. Due to its widespread human exposure and lack of toxicity and carcinogenicity data, RES was nominated to the National Toxicology Program for testing. To aid the toxicology studies, the dose, sex, and species differences in RES toxicokinetics was investigated in Harlan Sprague Dawley rats and B6C3F1/N mice following single intravenous (IV) (10 mg/kg) or oral gavage administration (312.5, 625, and 1250 mg/kg and 625, 1250, and 2500 mg/kg in rats and mice, respectively). Following IV and gavage administration, systemic exposure of RES based on AUC was trans-resveratrol-3-O-ß-D-glucuronide (R3G)> > trans-resveratrol-3-sulfate (R3S) > RES in both species. Following gavage administration Tmax_predicted values were ≤ 263 min for both species and sexes. RES elimination half-life was longer in rats than mice, and shortest in male mice. Clearance was slower in mice with no apparent sex difference in both species. In both rats and mice, following gavage administration AUC increased proportionally to the dose. After gavage administration, enterohepatic recirculation of RES was observed in both rats and mice with secondary peaks occurring around 640 min in the concentration-time profiles. RES was rapidly metabolized to R3S and R3G in both species. Extensive first pass conjugation and metabolism resulted in low levels of the parent compound RES which was confirmed by the low estimates for bioavailability. The bioavailability of RES was low, ~12-31% and ~2-6% for rats and mice, respectively, with no apparent difference between sexes.


Asunto(s)
Resveratrol/farmacocinética , Resveratrol/toxicidad , Administración Intravenosa , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Biotransformación , Circulación Enterohepática , Femenino , Masculino , Ratones , Ratones Endogámicos , Radiación , Ratas , Ratas Sprague-Dawley , Resveratrol/administración & dosificación , Caracteres Sexuales , Especificidad de la Especie , Distribución Tisular
3.
Xenobiotica ; 50(6): 722-732, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31680603

RESUMEN

Poly- and perfluorinated alkyl substances (PFAS) are environmentally persistent chemicals associated with many adverse health outcomes. The National Toxicology Program evaluated the toxicokinetics (TK) of several PFAS to provide context for toxicologic findings.Plasma TK parameters and tissue (liver, kidney, brain) concentrations are reported for perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA) or perfluorodecanoic acid (PFDA) after single-dose administration in male and female Hsd:Sprague-Dawley® (SD) rats.Generally, longer Tmax and elimination half-lives, and slower clearance f, were correlated with longer chain length. Male rats administered PFOA had a prolonged half-life compared to females (215 h vs. 2.75), while females had faster clearance and smaller plasma area under the curve (AUC). Females administered PFHxA had a shorter half-life (2 h vs. 9) than males and faster clearance with a smaller plasma AUC, although this was less pronounced than PFOA. There was no sex difference in PFDA half-life. Female rats administered PFDA had a higher plasma AUC/dose than males, and a slower clearance. PFDA had the highest levels in the liver of the PFAS evaluated.Profiling the toxicokinetics of these PFAS allows for comparison among subclasses, and more direct translation of rodent toxicity to human populations.


Asunto(s)
Caproatos/toxicidad , Caprilatos/toxicidad , Ácidos Decanoicos/toxicidad , Contaminantes Ambientales/toxicidad , Fluorocarburos/toxicidad , Animales , Caproatos/metabolismo , Caprilatos/metabolismo , Ácidos Decanoicos/metabolismo , Contaminantes Ambientales/metabolismo , Femenino , Fluorocarburos/metabolismo , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Toxicocinética
4.
Toxicol Sci ; 170(1): 234-246, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30985877

RESUMEN

The ICH revised the S3A guidance allowing blood to be microsampled for toxicokinetic analysis from the main study cohorts of rats in general toxicology studies. The resulting changes in the hemogram have been examined in healthy animals but the ability to read through the data when there are toxicological changes has not been thoroughly examined in the literature. To address this, a toxicology study in Sprague Dawley rats was conducted where animals received repeated doses of saline or valproic acid by IP injection daily for 7 days. Animals in both treatment groups were unbled, serially bled (6 bleeds/animal at 0.1 ml/bleed) or compositely bled (2 bleeds/animal at 0.6 ml/bleed) on days 1 and 7 for TK analysis. No statistically significant changes in the clinical pathology were observed for either the serial bleed or composite bleed animals when compared with their respective unbled control; however, a 4%-7% decrease in erythrocyte counts following serial bleeding and a 5%-19% decrease following composite bleeding was observed. When all the clinical pathology and organ weight data were equivalence tested, both the serial bleed and composite bleed results were equivalent to their unbled controls except for the erythroid parameters in the composite bleed group. Toxicokinetic analysis of the blood samples resulted in comparable concentration-time curves, regardless of the method of blood collection. Under these study conditions, the results show blood microsamples can be collected from the core or recovery cohort of animals in a toxicology study without impacting the toxicological interpretation in rats.


Asunto(s)
Volumen Sanguíneo , Flebotomía/métodos , Ácido Valproico/sangre , Ácido Valproico/toxicidad , Animales , Peso Corporal/efectos de los fármacos , Interpretación Estadística de Datos , Femenino , Pruebas Hematológicas , Inyecciones Intraperitoneales , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas Sprague-Dawley , Factores Sexuales , Toxicocinética
5.
Int J Toxicol ; 35(5): 584-603, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27170682

RESUMEN

Potassium cyanide (KCN) is an inhibitor of cytochrome C oxidase causing rapid death due to hypoxia. A well-characterized model of oral KCN intoxication is needed to test new therapeutics under the Food and Drug Administration Animal Rule. Clinical signs, plasma pH and lactate concentrations, biomarkers, histopathology, and cyanide and thiocyanate toxicokinetics were used to characterize the pathology of KCN intoxication in adult and juvenile mice. The acute oral LD50s were determined to be 11.8, 11.0, 10.9, and 9.9 mg/kg in water for adult male, adult female, juvenile male, and juvenile female mice, respectively. The time to death was rapid and dose dependent; juvenile mice had a shorter mean time to death. Juvenile mice displayed a more rapid onset and higher incidence of seizures. The time to observance of respiratory signs and prostration was rapid, but mice surviving beyond 2 hours generally recovered fully within 8 hours. At doses up to the LD50, there were no gross necropsy or microscopic findings clearly attributed to administration of KCN in juvenile or adult CD-1 mice from 24 hours to 28 days post-KCN challenge. Toxicokinetic analysis indicated rapid uptake, metabolism, and clearance of plasma cyanide. Potassium cyanide caused a rapid, dose-related decrease in blood pH and increase in serum lactate concentration. An increase in fatty acid-binding protein 3 was observed at 11.5 mg/kg KCN in adult but not in juvenile mice. These studies provide a characterization of KCN intoxication in adult and juvenile mice that can be used to screen or conduct preclinical efficacy studies of potential countermeasures.


Asunto(s)
Modelos Animales de Enfermedad , Cianuro de Potasio/toxicidad , Animales , Biomarcadores/sangre , Biomarcadores/orina , Peso Corporal , Evaluación Preclínica de Medicamentos , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Concentración de Iones de Hidrógeno , Ácido Láctico/sangre , Dosificación Letal Mediana , Masculino , Ratones , Ratones Endogámicos , Tiocianatos/sangre , Tiocianatos/orina , Toxicocinética
6.
Int J Toxicol ; 32(4 Suppl): 30S-7S, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23929447

RESUMEN

Organophosphorus (OP) nerve agents pose tremendous threats to both military and civilian populations. The substance 1,1'-methylenebis[4-[(hydroxyimino)methyl]-pyridinium] (MMB4) is being developed as a replacement for the currently fielded 2-pyridine aldoxime, or pralidoxime (2-PAM) as a treatment for OP nerve agent-induced toxicity. The present study characterized pharmacokinetic (PK) profiles of MMB4 in male and female Sprague-Dawley rats, New Zealand White rabbits, and beagle dogs given a single intravenous (IV) administration of MMB4 dimethanesulfonate (DMS) at 55, 25, and 15 mg/kg dose, respectively. The plasma MMB4 concentration versus time profiles were biphasic for all species tested and fit a 2-compartment model with first-order elimination. There were no overt sex-related differences in the calculated PK parameters. For the rat, rabbit, and dog, the average systemic exposure parameters predicted Cmax (µg/mL) and AUC∞ (µg·h/mL) were 273 and 71.0, 115 and 48.1, and 87.4 and 39.6; the average volume of distribution (mL/kg) values to the central and peripheral compartments were 207 and 143, 242 and 172, and 198 and 213; and the average elimination half-life (hour) and clearance (mL/h/kg) values were 0.18 and 778, 0.29 and 577, and 0.32 and 430, respectively, when the PK parameters for males and females were combined. The current study revealed a similarity in the volume of distribution to the central compartment for MMB4 among the 3 species tested while demonstrating species-related differences in the elimination half-life and clearance of MMB4.


Asunto(s)
Antídotos/administración & dosificación , Antídotos/farmacocinética , Oximas/administración & dosificación , Oximas/farmacocinética , Animales , Área Bajo la Curva , Perros , Femenino , Semivida , Inyecciones Intravenosas , Masculino , Estructura Molecular , Conejos , Ratas , Ratas Sprague-Dawley
7.
Int J Toxicol ; 32(4 Suppl): 38S-48S, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23929448

RESUMEN

1,1'-Methylenebis[4-[(hydroxyimino)methyl]-pyridinium] (MMB4) dimethanesulfonate (DMS) is a bisquaternary pyridinium aldoxime that reactivates acetylcholinesterase inhibited by organophosphorus nerve agent. Time courses of MMB4 concentrations in plasma were characterized following 7-day repeated intramuscular (IM) administrations of MMB4 DMS to male and female Sprague-Dawley rats, New Zealand White rabbits, beagle dogs (single dose only), and rhesus monkeys at drug dose levels used in earlier toxicology studies. In general, there were no significant differences in MMB4 toxicokinetic (TK) parameters between males and females for all the species tested in these studies. After a single IM administration to rats, rabbits, dogs, and monkeys, MMB4 DMS was rapidly absorbed, resulting in average T max values ranging from 5 to 30 minutes. Although C max values did not increase dose proportionally, the overall exposure to MMB4 in these preclinical species, as indicated by area under the curve (AUC) extrapolated to the infinity (AUC∞) values, increased in an approximately dose-proportional manner. The MMB4 DMS was extensively absorbed into the systemic circulation after IM administration as demonstrated by greater than 80% absolute bioavailability values for rats, rabbits, and dogs. Repeated administrations of MMB4 DMS for 7 days did not overtly alter TK parameters for MMB4 in rats, rabbits, and monkeys (150 and 300 mg/kg/d dose groups only). However, C max and AUC values decreased in monkeys given 450 and 600 mg/kg IM doses of MMB4 DMS following repeated administrations for 7 days. Based on the TK results obtained from the current study and published investigations, it was found that the apparent volume of distribution and clearance values were similar among various preclinical species, except for the rat.


Asunto(s)
Antídotos/farmacocinética , Antídotos/toxicidad , Oximas/farmacocinética , Oximas/toxicidad , Animales , Antídotos/administración & dosificación , Perros , Esquema de Medicación , Femenino , Inyecciones Intramusculares , Macaca mulatta , Masculino , Oximas/administración & dosificación , Oximas/sangre , Conejos , Ratas , Ratas Sprague-Dawley
8.
Pharm Res ; 23(8): 1675-86, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16841194

RESUMEN

PURPOSE: To study the correlation of intestinal absorption for drugs with various absorption routes between human and rat, and to explore the underlying molecular mechanisms for the similarity in drug intestinal absorption and the differences in oral bioavailability between human and rat. MATERIALS AND METHODS: The intestinal permeabilities of 14 drugs and three drug-like compounds with different absorption mechanisms in rat and human jejunum were determined by in situ intestinal perfusion. A total of 48 drugs were selected for oral bioavailability comparison. Expression profiles of transporters and metabolizing enzymes in both rat and human intestines (duodenum and colon) were measured using GeneChip analysis. RESULTS: No correlation (r(2) = 0.29) was found in oral drug bioavailability between rat and human, while a correlation (r(2) = 0.8) was observed for drug intestinal permeability with both carrier-mediated absorption and passive diffusion mechanisms between human and rat small intestine. Moderate correlation (with r(2) > 0.56) was also found for the expression levels of transporters in the duodenum of human and rat, which provides the molecular mechanisms for the similarity and correlation of drug absorption between two species. In contrast, no correlation was found for the expressions of metabolizing enzymes between rat and human intestine, which indicates the difference in drug metabolism and oral bioavailability in two species. Detailed analysis indicates that many transporters (such as PepT1, SGLT-1, GLUT5, MRP2, NT2, and high affinity glutamate transporter) share similar expression levels in both human and rat with regional dependent expression patterns, which have high expression in the small intestine and low expression in the colon. However, discrepancy was also observed for several other transporters (such as MDR1, MRP3, GLUT1, and GLUT3) in both the duodenum and colon of human and rat. In addition, the expressions of metabolizing enzymes (CYP3A4/CYP3A9 and UDPG) showed 12 to 193-fold difference between human and rat intestine with distinct regional dependent expression patterns. CONCLUSIONS: The data indicate that rat and human show similar drug intestinal absorption profiles and similar transporter expression patterns in the small intestine, while the two species exhibit distinct expression levels and patterns for metabolizing enzymes in the intestine. Therefore, a rat model can be used to predict oral drug absorption in the small intestine of human, but not to predict drug metabolism or oral bioavailability in human.


Asunto(s)
Absorción Intestinal/fisiología , Preparaciones Farmacéuticas/metabolismo , Animales , Disponibilidad Biológica , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cromatografía Líquida de Alta Presión , Colon/metabolismo , Interpretación Estadística de Datos , Duodeno/metabolismo , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Perfusión , Permeabilidad , Valor Predictivo de las Pruebas , ARN/biosíntesis , ARN/aislamiento & purificación , ARN Complementario/biosíntesis , ARN Complementario/genética , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA