Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 19(28): 285716, 2008 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-21828750

RESUMEN

This paper reports the first attempt to control the combustion and the detonation properties of a high explosive through its structure. A porous chromium(III) oxide matrix produced by the combustion of ammonium dichromate was infiltrated by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The structure of the Cr(2)O(3) matrix was studied by both scanning and transmission electron microscopy (SEM, TEM); the Cr(2)O(3)/RDX nanocomposites were characterized by nitrogen adsorption. A mathematical model based on these techniques was used to demonstrate that the Cr(2)O(3) matrix encloses and stabilizes RDX particles at the nanoscale. The decomposition process of the nanocomposites was investigated by atomic force microscopy (AFM). The reactivity and sensitivity of the nanocomposites were studied by impact and friction tests, differential scanning calorimetry (DSC), time-resolved cinematography and detonation experiments, and were correlated with their structure. The size of RDX nanoparticles and their distribution in the Cr(2)O(3) matrix have an important influence on their reactivity. The reactive properties of nanostructured RDX differ significantly from those of classical micron-sized RDX. For instance, the melting point disappears and the decomposition temperature is significantly lowered. The quantization of the explosive particles in the Cr(2)O(3) matrix decreases the sensitivity to mechanical stress and allows controlling the decomposition mode-i.e. combustion versus detonation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...