Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 38(44): 9446-9458, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381436

RESUMEN

Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.


Asunto(s)
Prosencéfalo Basal/metabolismo , Corteza Cerebral/metabolismo , Neuronas Colinérgicas/metabolismo , Cognición/fisiología , Red Nerviosa/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Envejecimiento/psicología , Animales , Prosencéfalo Basal/patología , Corteza Cerebral/patología , Neuronas Colinérgicas/patología , Demencia/diagnóstico , Demencia/fisiopatología , Demencia/psicología , Humanos , Red Nerviosa/patología
2.
Cell Rep ; 18(7): 1817-1830, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28199851

RESUMEN

Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.


Asunto(s)
Prosencéfalo Basal/fisiología , Neuronas Colinérgicas/fisiología , Acetilcolina/metabolismo , Animales , Axones/metabolismo , Axones/fisiología , Colinérgicos/metabolismo , Neuronas Colinérgicas/metabolismo , Femenino , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Sistema Nervioso Parasimpático/metabolismo , Sistema Nervioso Parasimpático/fisiología , Ratas
3.
Cereb Cortex ; 25(1): 118-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23964066

RESUMEN

The most prominent feature of the Basal Forebrain (BF) is the collection of large cortically projecting neurons (basal nucleus of Meynert) that serve as the primary source of cholinergic input to the entire cortical mantle. Despite its broad involvement in cortical activation, attention, and memory, the functional details of the BF are not well understood due to the anatomical complexity of the region. This study tested the hypothesis that basalocortical connections reflect cortical connectivity patterns. Distinct retrograde tracers were deposited into various frontal and posterior cortical areas, and retrogradely labeled cholinergic and noncholinergic neurons were mapped in the BF. Concurrently, we mapped retrogradely labeled cells in posterior cortical areas that project to various frontal areas, and all cell populations were combined in the same coordinate system. Our studies suggest that the cholinergic and noncholinergic projections to the neocortex are not diffuse, but instead, are organized into segregated or overlapping pools of projection neurons. The extent of overlap between BF populations projecting to the cortex depends on the degree of connectivity between the cortical targets of these projection populations. We suggest that the organization of projections from the BF may enable parallel modulation of multiple groupings of interconnected yet nonadjacent cortical areas.


Asunto(s)
Prosencéfalo Basal/citología , Corteza Cerebral/citología , Neuronas/citología , Animales , Imagenología Tridimensional , Masculino , Vías Nerviosas/citología , Técnicas de Trazados de Vías Neuroanatómicas , Ratas Sprague-Dawley
4.
J Neurosci ; 34(2): 506-14, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403150

RESUMEN

The septohippocampal pathway contains cholinergic, GABAergic, and glutamatergic projections and has an established role in learning, memory, and hippocampal theta rhythm. Both GABAergic and cholinergic neurons in the medial septum-diagonal band of Broca (MSDB) have been associated with spatial memory, but the relationship between the two neuronal populations is not fully understood. The present study investigated the effect of selective GABAergic MSDB lesions on hippocampal acetylcholine (ACh) efflux and spatial memory during tasks that varied in memory demand. Male Sprague Dawley rats were given GABAergic lesions of the MSDB using GAT1-saporin (GAT1-SAP) and examined on spontaneous exploration (Experiment 1) and non-matching to position without (NMTP; Experiment 2) and with a delay (DNMTP; Experiment 3), while concurrently using in vivo microdialysis to measure hippocampal ACh efflux. Intraseptal GAT1-SAP treatment did not alter baseline or behaviorally stimulated hippocampal ACh efflux or maze exploration (Experiment 1). Moreover, GAT1-SAP did not alter evoked hippocampal ACh efflux related to NMTP nor did it impair working memory in NMTP (Experiment 2). In contrast, both ACh efflux and performance in DNMTP were impaired by intraseptal GAT1-SAP. Thus, GABAergic MSDB neurons are important for spatial working memory and modulate hippocampal ACh efflux under conditions of high memory load. The relationship between the septohippocampal cholinergic and GABAergic systems and working memory will be discussed.


Asunto(s)
Acetilcolina/metabolismo , Cognición/fisiología , Hipocampo/metabolismo , Núcleos Septales/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Inmunohistoquímica , Masculino , Microdiálisis , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...