Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313615

RESUMEN

GC-rich tandem repeat expansions (TREs) are often associated with DNA methylation, gene silencing and folate-sensitive fragile sites, and underlie several congenital and late-onset disorders. Through a combination of DNA-methylation profiling and tandem repeat genotyping, we identified 24 methylated TREs and investigated their effects on human traits using phenome-wide association studies in 168,641 individuals from the UK Biobank, identifying 156 significant TRE-trait associations involving 17 different TREs. Of these, a GCC expansion in the promoter of AFF3 was associated with a 2.4-fold reduced probability of completing secondary education, an effect size comparable to several recurrent pathogenic microdeletions. In a cohort of 6,371 probands with neurodevelopmental problems of suspected genetic etiology, we observed a significant enrichment of AFF3 expansions compared with controls. With a population prevalence that is at least fivefold higher than the TRE that causes fragile X syndrome, AFF3 expansions represent a major cause of neurodevelopmental delay.

2.
medRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461547

RESUMEN

Repeat expansion disorders (REDs) are a devastating group of predominantly neurological diseases. Together they are common, affecting 1 in 3,000 people worldwide with population-specific differences. However, prevalence estimates of REDs are hampered by heterogeneous clinical presentation, variable geographic distributions, and technological limitations leading to under-ascertainment. Here, leveraging whole genome sequencing data from 82,176 individuals from different populations we found an overall carrier frequency of REDs of 1 in 340 individuals. Modelling disease prevalence using genetic data, age at onset and survival, we show that REDs are up to 3-fold more prevalent than currently reported figures. While some REDs are population-specific, e.g. Huntington's disease type 2, most REDs are represented in all broad genetic ancestries, including Africans and Asians, challenging the notion that some REDs are found only in European populations. These results have worldwide implications for local and global health communities in the diagnosis and management of REDs both at local and global levels.

3.
Am J Hum Genet ; 108(5): 809-824, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33794196

RESUMEN

Variable number tandem repeats (VNTRs) are composed of large tandemly repeated motifs, many of which are highly polymorphic in copy number. However, because of their large size and repetitive nature, they remain poorly studied. To investigate the regulatory potential of VNTRs, we used read-depth data from Illumina whole-genome sequencing to perform association analysis between copy number of ∼70,000 VNTRs (motif size ≥ 10 bp) with both gene expression (404 samples in 48 tissues) and DNA methylation (235 samples in peripheral blood), identifying thousands of VNTRs that are associated with local gene expression (eVNTRs) and DNA methylation levels (mVNTRs). Using an independent cohort, we validated 73%-80% of signals observed in the two discovery cohorts, while allelic analysis of VNTR length and CpG methylation in 30 Oxford Nanopore genomes gave additional support for mVNTR loci, thus providing robust evidence to support that these represent genuine associations. Further, conditional analysis indicated that many eVNTRs and mVNTRs act as QTLs independently of other local variation. We also observed strong enrichments of eVNTRs and mVNTRs for regulatory features such as enhancers and promoters. Using the Human Genome Diversity Panel, we define sets of VNTRs that show highly divergent copy numbers among human populations and show that these are enriched for regulatory effects and preferentially associate with genes that have been linked with human phenotypes through GWASs. Our study provides strong evidence supporting functional variation at thousands of VNTRs and defines candidate sets of VNTRs, copy number variation of which potentially plays a role in numerous human phenotypes.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Metilación de ADN , Regulación de la Expresión Génica , Repeticiones de Minisatélite/genética , Sitios de Carácter Cuantitativo/genética , Adolescente , Adulto , Algoritmos , Niño , Preescolar , Cromosomas Humanos X/genética , Estudios de Cohortes , Islas de CpG/genética , Elementos de Facilitación Genéticos/genética , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Fenotipo , Regiones Promotoras Genéticas/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...