Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanophotonics ; 13(12): 2271-2280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774765

RESUMEN

The optical and electronic tunability of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has enabled emerging applications as diverse as bioelectronics, flexible electronics, and micro- and nano-photonics. High-resolution spatial patterning of PEDOT:PSS opens up opportunities for novel active devices in a range of fields. However, typical lithographic processes require tedious indirect patterning and dry etch processes, while solution-processing methods such as ink-jet printing have limited spatial resolution. Here, we report a method for direct write nano-patterning of commercially available PEDOT:PSS through electron-beam induced solubility modulation. The written structures are water stable and maintain the conductivity as well as electrochemical and optical properties of PEDOT:PSS, highlighting the broad utility of our method. We demonstrate the potential of our strategy by preparing prototypical nano-wire structures with feature sizes down to 250 nm, an order of magnitude finer than previously reported direct write methods, opening the possibility of writing chip-scale microelectronic and optical devices. We finally use the high-resolution writing capabilities to fabricate electrically-switchable optical diffraction gratings. We show active switching in this archetypal system with >95 % contrast at CMOS-compatible voltages of +2 V and -3 V, offering a route towards highly-miniaturized dynamic optoelectronic devices.

2.
Opt Express ; 32(6): 9777-9789, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571203

RESUMEN

3D printed microoptics have become important tools for miniature endoscopy, novel CMOS-based on-chip sensors, OCT-fibers, among others. Until now, only image quality and spot diagrams were available for optical characterization. Here, we introduce Ronchi interferometry as ultracompact and quick quantitative analysis method for measuring the wavefront aberrations after propagating coherent light through the 3D printed miniature optics. We compare surface shapes by 3D confocal microscopy with optical characterizations by Ronchi interferograms. Phase retrieval gives us the transversal wave front aberration map, which indicates that the aberrations of our microlenses that have been printed with a Nanoscribe GT or Quantum X printer exhibit RMS wavefront aberrations as small as λ/20, Strehl ratios larger than 0.91, and near-diffraction limited modulation transfer functions. Our method will be crucial for future developments of 3D printed microoptics, as the method is ultracompact, ultra-stable, and very fast regarding measurement and evaluation. It could fit directly into a 3D printer and allows for in-situ measurements right after printing as well as fast iterations for improving the shape of the optical surface.

3.
Biomed Opt Express ; 15(3): 1528-1539, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495716

RESUMEN

We demonstrate the detection sensitivity of microplastic beads within fish tissue using stimulated Raman scattering (SRS) microscopy. The intrinsically provided chemical contrast distinguishes different types of plastic compounds within fish tissue. We study the size-dependent signal-to-noise ratio of the microplastic beads and determine a lower boundary for the detectable size. Our findings demonstrate how SRS microscopy can serve as a complementary modality to conventional Raman scattering imaging in order to detect and identify microplastic particles in fish tissue.

4.
Nat Commun ; 14(1): 8208, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081820

RESUMEN

Creating micro/nanostructures containing multi-channel information within responsive hydrogels presents exciting opportunities for dynamically changing functionalities. However, fabricating these structures is immensely challenging due to the soft and dynamic nature of hydrogels, often resulting in unintended structural deformations or destruction. Here, we demonstrate that dehydrated hydrogels, treated by a programmable femtosecond laser, can allow for a robust fabrication of micro/nanostructures. The dehydration enhances the rigidity of the hydrogels and temporarily locks the dynamic behaviours, significantly promoting their structural integrity during the fabrication process. By utilizing versatile dosage domains of the femtosecond laser, we create micro-grooves on the hydrogel surface through the use of a high-dosage mode, while also altering the fluorescent intensity within the rest of the non-ablated areas via a low-dosage laser. In this way, we rationally design a pixel unit containing three-channel information: structural color, polarization state, and fluorescent intensity, and encode three complex image information sets into these channels. Distinct images at the same location were simultaneously printed onto the hydrogel, which can be observed individually under different imaging modes without cross-talk. Notably, the recovered dynamic responsiveness of the hydrogel enables a multi-information-encoded surface that can sequentially display different information as the temperature changes.

5.
ACS Photonics ; 10(12): 4252-4258, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145172

RESUMEN

The creation and manipulation of optical vortices, both in free space and in two-dimensional systems such as surface plasmon polaritons (SPPs), has attracted widespread attention in nano-optics due to their robust topological structure. Coupled with strong spatial confinement in the case of SPPs, these plasmonic vortices and their underlying orbital angular momentum (OAM) have promise in novel light-matter interactions on the nanoscale with applications ranging from on-chip particle manipulation to tailored control of plasmonic quasiparticles. Until now, predominantly integer OAM values have been investigated. Here, we measure and analyze the time evolution of fractional OAM SPPs using time-resolved two-photon photoemission electron microscopy and near-field optical microscopy. We experimentally show the field's complex rotational dynamics and observe the beating of integer OAM eigenmodes at fractional OAM excitations. With our ability to access the ultrafast time dynamics of the electric field, we can follow the buildup of the plasmonic fractional OAM during the interference of the converging surface plasmons. By adiabatically increasing the phase discontinuity at the excitation boundary, we track the total OAM, leading to plateaus around integer OAM values that arise from the interplay between intrinsic and extrinsic OAM.

6.
Opt Lett ; 48(24): 6549-6552, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099796

RESUMEN

Microscale 3D-printing has revolutionized micro-optical applications ranging from endoscopy, imaging, to quantum technologies. In all these applications, miniaturization is key, and in combination with the nearly unlimited design space, it is opening novel, to the best of our knowledge, avenues. Here, we push the limits of miniaturization and durability by realizing the first fiber laser system with intra-cavity on-fiber 3D-printed optics. We demonstrate stable laser operation at over 20 mW output power at 1063.4 nm with a full width half maximum (FWHM) bandwidth of 0.11 nm and a maximum output power of 37 mW. Furthermore, we investigate the power stability and degradation of 3D-printed optics at Watt power levels. The intriguing possibilities afforded by free-form microscale 3D-printed optics allow us to combine the gain in a solid-state crystal with fiber guidance in a hybrid laser concept. Therefore, our novel ansatz enables the compact integration of a bulk active media in fiber platforms at substantial power levels.

7.
Opt Express ; 31(11): 17380-17388, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381474

RESUMEN

We demonstrate laser-written concave hemispherical structures produced on the endfacets of optical fibers that serve as mirror substrates for tunable open-access microcavities. We achieve finesse values of up to 200, and a mostly constant performance across the entire stability range. This enables cavity operation also close to the stability limit, where a peak quality factor of 1.5 × 104 is reached. Together with a small mode waist of 2.3 µm, the cavity achieves a Purcell factor of C ∼ 2.5, which is useful for experiments that require good lateral optical access or otherwise large separation of the mirrors. Laser-written mirror profiles can be produced with a tremendous flexibility in shape and on various surfaces, opening new possibilities for microcavities.

8.
Nano Lett ; 23(11): 5141-5147, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37222496

RESUMEN

Nonlinear optical plasmonics investigates the emission of plasmonic nanoantennas with the aid of nonlinear spectroscopy. Here we introduce nonlinear spatially resolved spectroscopy (NSRS) which is capable of imaging the k-space as well as spatially resolving the THG signal of gold nanoantennas and investigating the emission of individual antennas by wide-field illumination of entire arrays. Hand in hand with theoretical simulations, we demonstrate our ability of imaging various oscillation modes inside the nanostructures and therefore spatial emission hotspots. Upon increasing intensity of the femtosecond excitation, an individual destruction threshold can be observed. We find certain antennas becoming exceptionally bright. By investigating those samples taking structural SEM images of the nanoantenna arrays afterward, our spatially resolved nonlinear image can be correlated with this data proving that antennas had deformed into a peanut-like shape. Thus, our NSRS setup enables the investigation of a nonlinear self-enhancement process of nanoantennas under critical laser excitation.

9.
Nanophotonics ; 12(8): 1397-1404, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37114093

RESUMEN

We present an electrically switchable, compact metasurface device based on the metallic polymer PEDOT:PSS in combination with a gel polymer electrolyte. Applying square-wave voltages, we can reversibly switch the PEDOT:PSS from dielectric to metallic. Using this concept, we demonstrate a compact, standalone, and CMOS compatible metadevice. It allows for electrically controlled ON and OFF switching of plasmonic resonances in the 2-3 µm wavelength range, as well as electrically controlled beam switching at angles up to 10°. Furthermore, switching frequencies of up to 10 Hz, with oxidation times as fast as 42 ms and reduction times of 57 ms, are demonstrated. Our work provides the basis towards solid state switchable metasurfaces, ultimately leading to submicrometer-pixel spatial light modulators and hence switchable holographic devices.

10.
Biomed Opt Express ; 14(4): 1460-1471, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078053

RESUMEN

Pectin is a heteropolysaccharide responsible for the structural integrity of the cell walls of terrestrial plants. When applied to the surface of mammalian visceral organs, pectin films form a strong physical bond with the surface glycocalyx. A potential mechanism of pectin adhesion to the glycocalyx is the water-dependent entanglement of pectin polysaccharide chains with the glycocalyx. A better understanding of such fundamental mechanisms regarding the water transport dynamics in pectin hydrogels is of importance for medical applications, e.g., surgical wound sealing. We report on the water transport dynamics in hydrating glass-phase pectin films with particular emphasis on the water content at the pectin-glycocalyceal interface. We used label-free 3D stimulated Raman scattering (SRS) spectral imaging to provide insights into the pectin-tissue adhesive interface without the confounding effects of sample fixation, dehydration, shrinkage, or staining.

11.
Opt Express ; 31(3): 4179-4189, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785392

RESUMEN

We demonstrate 3D printed aspherical singlet and doublet microoptical components by grayscale lithography and characterize and evaluate their excellent shape accuracy and optical performance. The typical two-photon polymerization (2PP) 3D printing process creates steps in the structure which is undesired for optical surfaces. We utilize two-photon grayscale lithography (2GL) to create step-free lenses. To showcase the 2GL process, the focusing ability of a spherical and aspherical singlet lens are compared. The surface deviations of the aspherical lens are minimized by an iterative design process and no distinct steps can be measured via confocal microscopy. We design, print, and optimize an air-spaced doublet lens with a diameter of 300 µm. After optimization, the residual shape deviation is less than 100 nm for the top lens and 20 nm for the bottom lens of the doublet. We examine the optical performance with an USAF 1951 resolution test chart to find a resolution of 645 lp/mm.

12.
Opt Lett ; 48(1): 131-134, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563386

RESUMEN

3D direct laser writing is a powerful and widely used tool to create complex micro-optics. The fabrication method offers two different writing modes. During the immersion mode, an immersion medium is applied between the objective and the substrate while the photoresist is exposed on its back side. Alternatively, when using the dip-in mode, the objective is in direct contact with the photoresist and the structure is fabricated on the objective facing side of the substrate. In this Letter, we demonstrate the combination of dip-in and photoresist immersion printing, by using the photoresist itself as immersion medium. This way, two parts of a doublet objective can be fabricated on the front and back sides of a substrate, using it as a spacer with a lateral registration below 1 µm and without the need of additional alignment. This approach also enables the alignment free combination of different photoresists on the back and front sides. We use this benefit by printing a black aperture on the back of the substrate, while the objective lens is printed on the front.

13.
Light Sci Appl ; 12(1): 3, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36587036

RESUMEN

Manipulating light on the nanoscale has become a central challenge in metadevices, resonant surfaces, nanoscale optical sensors, and many more, and it is largely based on resonant light confinement in dispersive and lossy metals and dielectrics. Here, we experimentally implement a novel strategy for dielectric nanophotonics: Resonant subwavelength localized confinement of light in air. We demonstrate that voids created in high-index dielectric host materials support localized resonant modes with exceptional optical properties. Due to the confinement in air, the modes do not suffer from the loss and dispersion of the dielectric host medium. We experimentally realize these resonant Mie voids by focused ion beam milling into bulk silicon wafers and experimentally demonstrate resonant light confinement down to the UV spectral range at 265 nm (4.68 eV). Furthermore, we utilize the bright, intense, and naturalistic colours for nanoscale colour printing. Mie voids will thus push the operation of functional high-index metasurfaces into the blue and UV spectral range. The combination of resonant dielectric Mie voids with dielectric nanoparticles will more than double the parameter space for the future design of metasurfaces and other micro- and nanoscale optical elements. In particular, this extension will enable novel antenna and structure designs which benefit from the full access to the modal field inside the void as well as the nearly free choice of the high-index material for novel sensing and active manipulation strategies.

14.
Opt Express ; 31(26): 44680-44692, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178532

RESUMEN

We report on spectrotemporal transient dynamics in a femtosecond fiber-feedback optical parametric oscillator (FFOPO) system. Burst modulation of the pump beam in combination with dispersive Fourier transformation sampling allows to record single-pulse signal spectra at 41 MHz sampling rate. Therefore, each individual pulse of the signal transients can be spectrally resolved. We characterize the signal output behavior for anomalous as well as for normal intra-cavity dispersion. Amongst steady state output we observed period-doubling cycles and other attractors, which occured at higher intra-cavity nonlinearity levels. The experimental findings are supported by numerical simulations, in order to identify the linear and nonlinear effects, which govern the wavelength tuning behavior of this FFOPO system. We find that steady state operation is preferred and that the wavelength tuning stability of the FFOPO dramatically increases when using a normal dispersion feedback fiber.

15.
Nat Commun ; 13(1): 7183, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418295

RESUMEN

Switchable metasurfaces can actively control the functionality of integrated metadevices with high efficiency and on ultra-small length scales. Such metadevices include active lenses, dynamic diffractive optical elements, or switchable holograms. Especially, for applications in emerging technologies such as AR (augmented reality) and VR (virtual reality) devices, sophisticated metaoptics with unique functionalities are crucially important. In particular, metaoptics which can be switched electrically on or off will allow to change the routing, focusing, or functionality in general of miniaturized optical components on demand. Here, we demonstrate metalenses-on-demand made from metallic polymer plasmonic nanoantennas which are electrically switchable at CMOS (complementary metal-oxide-semiconductor) compatible voltages of ±1 V. The nanoantennas exhibit plasmonic resonances which can be reversibly switched ON and OFF via the applied voltage, utilizing the optical metal-to-insulator transition of the metallic polymer. Ultimately, we realize an electro-active non-volatile multi-functional metaobjective composed of two metalenses, whose unique optical states can be set on demand. Overall, our work opens up the possibility for a new level of electro-optical elements for ultra-compact photonic integration.

16.
Opt Express ; 30(18): 32292-32305, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242294

RESUMEN

We discuss the coupling efficiency of single-photon sources into single-mode fibers using 3D printed micro-optical lens designs. Using the wave propagation method, we optimize lens systems for two different quantum light sources and assess the results in terms of maximum coupling efficiencies, misalignment effects, and thermo-optical influences. Thereby, we compare singlet lens designs with one lens printed onto the fiber with doublet lens designs with an additional lens printed onto the semiconductor substrate. The single-photon sources are quantum dots based on microlenses and circular Bragg grating cavities at 930 nm and 1550 nm, respectively.

17.
Opt Express ; 30(10): 15913-15928, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221446

RESUMEN

We perform extended numerical studies to maximize the overall photon coupling efficiency of fiber-coupled quantum dot single-photon sources emitting in the near-infrared and O-band and C-band. Using the finite element method, we optimize the photon extraction and fiber-coupling efficiency of quantum dot single-photon sources based on micromesas, microlenses, circular Bragg grating cavities and micropillars. The numerical simulations which consider the entire system consisting of the quantum dot source itself, the coupling lens, and the single-mode fiber, yield overall photon coupling efficiencies of up to 83%. Our work provides objectified comparability of different fiber-coupled single-photon sources and proposes optimized geometries for the realization of practical and highly efficient quantum dot single-photon sources.

18.
Sensors (Basel) ; 22(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35898072

RESUMEN

The detection and quantification of glucose concentrations in human blood or in the ocular fluid gain importance due to the increasing number of diabetes patients. A reliable determination of these low concentrations is hindered by the complex aqueous environments in which various biomolecules are present. In this study, we push the detection limit as well as the discriminative power of plasmonic nanoantenna-based sensors towards the physiological limit. We utilize plasmonic surface-enhanced infrared absorption spectroscopy (SEIRA) to study aqueous solutions of mixtures of up to five different physiologically relevant saccharides, namely the monosaccharides glucose, fructose, and galactose, as well as the disaccharides maltose and lactose. Resonantly tuned plasmonic nanoantennas in a reflection flow cell geometry allow us to enhance the specific vibrational fingerprints of the mono- and disaccharides. The obtained spectra are analyzed via principal component analysis (PCA) using a machine learning algorithm. The high performance of the sensor together with the strength of PCA allows us to detect concentrations of aqueous mono- and disaccharides solutions down to the physiological levels of 1 g/L. Furthermore, we demonstrate the reliable discrimination of the saccharide concentrations, as well as compositions in mixed solutions, which contain all five mono- and disaccharides simultaneously. These results underline the excellent discriminative power of plasmonic SEIRA spectroscopy in combination with the PCA. This unique combination and the insights gained will improve the detection of biomolecules in different complex environments.


Asunto(s)
Carbohidratos , Azúcares , Disacáridos/química , Glucosa/análisis , Humanos , Análisis de Componente Principal , Agua/química
19.
ACS Nano ; 16(6): 9410-9419, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35657964

RESUMEN

Structural colors of plasmonic metasurfaces have been promised to a strong technological impact thanks to their high brightness, durability, and dichroic properties. However, fabricating metasurfaces whose spatial distribution must be customized at each implementation and over large areas is still a challenge. Since the demonstration of printed image multiplexing on quasi-random plasmonic metasurfaces, laser processing appears as a promising technology to reach the right level of accuracy and versatility. The main limit comes from the absence of physical models to predict the optical properties that can emerge from the laser processing of metasurfaces in which random metallic nanostructures are characterized by their statistical properties. Here, we demonstrate that deep neural networks trained from experimental data can predict the spectra and colors of laser-induced plasmonic metasurfaces in various observation modes. With thousands of experimental data, produced in a rapid and efficient way, the training accuracy is better than the perceptual just noticeable change. This accuracy enables the use of the predicted continuous color charts to find solutions for printing multiplexed images. Our deep learning approach is validated by an experimental demonstration of laser-induced two-image multiplexing. This approach greatly improves the performance of the laser-processing technology for both printing color images and finding optimized parameters for multiplexing. The article also provides a simple mining algorithm for implementing multiplexing with multiple observation modes and colors from any printing technology. This study can improve the optimization of laser processes for high-end applications in security, entertainment, or data storage.

20.
Opt Lett ; 47(12): 3099-3102, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35709060

RESUMEN

We report a compact and passively stable optical parametric oscillator for direct generation of sub-40 fs pulses, five times shorter than the 200 fs pump oscillator. By employing an intracavity all normal dispersion feedback fiber, we achieved low-noise and coherent broadening beyond the parametric gain bandwidth limitation. We demonstrate spectral coverage from 1.1 to 2.0 µm with excellent passive power and spectral stability below 0.1% rms and a footprint smaller than 14 × 14 cm2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...