Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
N Biotechnol ; 77: 130-138, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37643666

RESUMEN

Glycoside hydrolases (GHs) have been employed for industrial and biotechnological purposes and often play an important role in new applications. The red blood cell (RBC) antigen system depends on the composition of oligosaccharides on the surface of erythrocytes, thus defining the ABO blood type classification. Incorrect blood transfusions may lead to fatal consequences, making the availability of the correct blood group critical. In this regard, it has been demonstrated that some GHs may be helpful in the conversion of groups A and B blood types to produce group O universal donor blood. GHs belonging to the GH109 family are of particular interest for this application due to their ability to convert blood from group A to group O. This work describes the biochemical characterisation of three novel GH109 enzymes (NAg68, NAg69 and NAg71) and the exploration of their ability to produce enzymatically converted RBCs (ECO-RBC). The three enzymes showed superior specificity on pNP-α-N-acetylgalactosamine compared to previously reported GH109 enzymes. These novel enzymes were able to act on purified antigen-A trisaccharides and produce ECO-RBC from human donor blood. NAg71 converted type A RBC to group O with increased efficiency in the presence of dextran compared to a commercially available GH109, previously used for this application.


Asunto(s)
Eritrocitos , Donantes de Tejidos , Humanos , Eritrocitos/metabolismo , Glicósido Hidrolasas/metabolismo , Oligosacáridos , Biotecnología , Sistema del Grupo Sanguíneo ABO/análisis , Sistema del Grupo Sanguíneo ABO/química , Sistema del Grupo Sanguíneo ABO/metabolismo
2.
Nat Commun ; 7: 11771, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27249579

RESUMEN

The fabrication of nanoscale devices requires architectural templates on which to position functional molecules in complex arrangements. Protein scaffolds are particularly promising templates for nanomaterials due to inherent molecular recognition and self-assembly capabilities combined with genetically encoded functionalities. However, difficulties in engineering protein quaternary structure into stable and well-ordered shapes have hampered progress. Here we report the development of an ultrastable biomolecular construction kit for the assembly of filamentous proteins into geometrically defined templates of controllable size and symmetry. The strategy combines redesign of protein-protein interaction specificity with the creation of tunable connector proteins that govern the assembly and projection angles of the filaments. The functionality of these nanoarchitectures is illustrated by incorporation of nanoparticles at specific locations and orientations to create hybrid materials such as conductive nanowires. These new structural components facilitate the manufacturing of nanomaterials with diverse shapes and functional properties over a wide range of processing conditions.


Asunto(s)
Proteínas Arqueales/química , Nanopartículas del Metal/química , Chaperonas Moleculares/química , Nanocables/química , Ingeniería de Proteínas/métodos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Nanopartículas del Metal/ultraestructura , Methanocaldococcus/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Nanotecnología/métodos , Nanocables/ultraestructura , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
3.
Nat Chem Biol ; 9(8): 494-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23748672

RESUMEN

Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that pronounced molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400-fold by random mutagenesis and screening, affording catalytic efficiencies approaching those of natural enzymes. However, structural and mechanistic studies reveal that the engineered catalytic apparatus, consisting of a reactive lysine and an ordered water molecule, was unexpectedly abandoned in favor of a new lysine residue in a substrate-binding pocket created during the optimization process. Structures of the initial in silico design, a mechanistically promiscuous intermediate and one of the most evolved variants highlight the importance of loop mobility and supporting functional groups in the emergence of the new catalytic center. Such internal competition between alternative reactive sites may have characterized the early evolution of many natural enzymes.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Biología Computacional , Evolución Molecular Dirigida , Biocatálisis , Dominio Catalítico , Simulación por Computador , Modelos Moleculares , Estructura Molecular
4.
Biotechnol J ; 8(2): 228-36, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22965482

RESUMEN

Self-assembling protein templates have enormous potential as biomaterials for the fabrication of multifunctional nanostructures that require precise positioning of individual molecules in regular patterns over large surface areas. Furthermore, the development of protein templates that are stable under extreme conditions of heat or chemical denaturants will expand processing conditions and end-use applications for biomaterials that require exceptional stability and robustness. In the present work, we characterized the high thermal stability of a filamentous protein template, the γ-prefoldin (γPFD) from the hyperthermophile Methanocaldococcus jannaschii, and subsequently used rational design to further enhance the filament's thermal stability for application as a biotemplate in the creation of platinum nanowires. The γPFD assembles into long fibers with lengths that exceed 2 µm, which when heated to various temperatures and examined by transmission electron microscopy, revealed a T(m) of 93°C for the quaternary filament structure. Subsequently, we increased the hydrophobicity of the α-helices of the γPFD's coiled-coil, which appeared to strengthen the filamentous structure, leading to filaments of greater length at elevated temperatures. These enhanced filaments functioned as templates for the synthesis of platinum nanowires at unprecedented temperatures, and may create new opportunities for other applications of nanoscale biotemplates that require exceptional thermal stability. See accompanying commentary by Jonathan S. Dordick DOI: 10.1002/biot.201200338.


Asunto(s)
Nanopartículas del Metal/química , Chaperonas Moleculares/química , Platino (Metal)/química , Ingeniería de Proteínas/métodos , Materiales Biocompatibles/análisis , Materiales Biocompatibles/química , Dicroismo Circular , Expresión Génica , Microscopía Electrónica de Transmisión , Modelos Moleculares , Estructura Molecular , Mutación , Nanocables/química , Plásmidos/química , Replegamiento Proteico , Análisis de Secuencia de ADN , Temperatura
5.
Protein Sci ; 21(5): 717-26, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22407837

RESUMEN

Enzyme catalysts of a retroaldol reaction have been generated by computational design using a motif that combines a lysine in a nonpolar environment with water-mediated stabilization of the carbinolamine hydroxyl and ß-hydroxyl groups. Here, we show that the design process is robust and repeatable, with 33 new active designs constructed on 13 different protein scaffold backbones. The initial activities are not high but are increased through site-directed mutagenesis and laboratory evolution. Mutational data highlight areas for improvement in design. Different designed catalysts give different borohydride-reduced reaction intermediates, suggesting a distribution of properties of the designed enzymes that may be further explored and exploited.


Asunto(s)
Aldehído-Liasas/química , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Dominio Catalítico , Evolución Molecular Dirigida/métodos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Mol Biol ; 415(3): 615-25, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22075445

RESUMEN

We report the cocrystal structures of a computationally designed and experimentally optimized retro-aldol enzyme with covalently bound substrate analogs. The structure with a covalently bound mechanism-based inhibitor is similar to, but not identical with, the design model, with an RMSD of 1.4 Å over active-site residues and equivalent substrate atoms. As in the design model, the binding pocket orients the substrate through hydrophobic interactions with the naphthyl moiety such that the oxygen atoms analogous to the carbinolamine and ß-hydroxyl oxygens are positioned near a network of bound waters. However, there are differences between the design model and the structure: the orientation of the naphthyl group and the conformation of the catalytic lysine are slightly different; the bound water network appears to be more extensive; and the bound substrate analog exhibits more conformational heterogeneity than typical native enzyme-inhibitor complexes. Alanine scanning of the active-site residues shows that both the catalytic lysine and the residues around the binding pocket for the substrate naphthyl group make critical contributions to catalysis. Mutating the set of water-coordinating residues also significantly reduces catalytic activity. The crystal structure of the enzyme with a smaller substrate analog that lacks naphthyl ring shows the catalytic lysine to be more flexible than in the naphthyl-substrate complex; increased preorganization of the active site would likely improve catalysis. The covalently bound complex structures and mutagenesis data highlight the strengths and weaknesses of the de novo enzyme design strategy.


Asunto(s)
Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Ingeniería de Proteínas/métodos , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
7.
Bioorg Med Chem Lett ; 18(22): 5987-90, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18760921

RESUMEN

The Y265A mutant of alanine racemase (alrY265A) was evaluated as a catalyst for the synthesis of beta-hydroxy-alpha-amino acids. It promotes the PLP-dependent aldol condensation of glycine with a range of aromatic aldehydes. The desired products were obtained with complete stereocontrol at C(alpha) (ee>99%, D) and moderate to high selectivity at C(beta) (up to 97% de). The designed enzyme is thus similar to natural d-threonine aldolases in its substrate specificity and stereoselectivity. Moreover, its ability to utilize alanine as an alternative donor suggests an expanded scope of potential utility for the production of biologically active compounds.


Asunto(s)
Alanina Racemasa/metabolismo , Aminoácidos/síntesis química , Bacterias/enzimología , Alanina/metabolismo , Alanina Racemasa/genética , Aldehídos/metabolismo , Aminoácidos/química , Catálisis , Técnicas Químicas Combinatorias , Glicina/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Estructura Molecular , Ingeniería de Proteínas , Fosfato de Piridoxal/metabolismo , Estereoisomerismo
8.
Proc Natl Acad Sci U S A ; 104(35): 13907-12, 2007 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-17715291

RESUMEN

The biosynthesis of small molecules can be fine-tuned by (re)engineering metabolic flux within cells. We have adapted this approach to optimize an in vivo selection system for the conversion of prephenate to phenylpyruvate, a key step in the production of the essential aromatic amino acid phenylalanine. Careful control of prephenate concentration in a bacterial host lacking prephenate dehydratase, achieved through provision of a regulable enzyme that diverts it down a parallel biosynthetic pathway, provides the means to systematically increase selection pressure on replacements of the missing catalyst. Successful differentiation of dehydratases whose activities vary over a >50,000-fold range and the isolation of mechanistically informative prephenate dehydratase variants from large protein libraries illustrate the potential of the engineered selection strain for characterizing and evolving enzymes. Our approach complements other common methods for adjusting selection pressure and should be generally applicable to any selection system that is based on the conversion of an endogenous metabolite.


Asunto(s)
Prefenato Deshidratasa/genética , Selección Genética , Aminoácidos/metabolismo , Evolución Molecular Dirigida , Ingeniería Genética/métodos , Variación Genética , Cinética , Modelos Genéticos , Modelos Moleculares , Plásmidos , Prefenato Deshidratasa/química , Prefenato Deshidratasa/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ácido Shikímico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...