Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(17): 7912-7925, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38620046

RESUMEN

We designed [VO(bdhb)] (1') as a new electronic qubit containing an oxovanadium(IV) ion (S = 1/2) embraced by a single bis(ß-diketonato) ligand [H2bdhb = 1,3-bis(3,5-dioxo-1-hexyl)benzene]. The synthesis afforded three different crystal phases, all of which unexpectedly contain dimers with formula [(VO)2(bdhb)2] (1). A trigonal form (1h) with a honeycomb structure and 46% of solvent-accessible voids quantitatively transforms over time into a monoclinic solvatomorph 1m and minor amounts of a triclinic solventless phase (1a). In a static magnetic field, 1h and 1m have detectably slow magnetic relaxation at low temperatures through quantum tunneling and Raman mechanisms. Angle-resolved electron paramagnetic resonance (EPR) spectra on single crystals revealed signatures of low-dimensional magnetic behavior, which is solvatomorph-dependent, being the closest interdimer V···V separations (6.7-7.5 Å) much shorter than intramolecular V···V distances (11.9-12.1 Å). According to 1H diffusion ordered spectroscopy (DOSY) and EPR experiments, the complex adopts the desired monomeric structure in organic solution and its geometry was inferred from density functional theory (DFT) calculations. Spin relaxation measurements in a frozen toluene-d8/CD2Cl2 matrix yielded Tm values reaching 13 µs at 10 K, and coherent spin manipulations were demonstrated by Rabi nutation experiments at 70 K. The neutral quasi-macrocyclic structure, featuring nuclear spin-free donors and additional possibilities for chemical functionalization, makes 1' a new convenient spin-coherent building block in quantum technologies.

2.
RSC Adv ; 14(3): 1875-1887, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38192325

RESUMEN

In this contribution, a comprehensive study of nanostructured Bi2Te3 (BT) thermoelectric material was performed using a combination of synchrotron radiation-based techniques such as XAFS, and XRF, along with some other laboratory techniques such as XRD, XPS, FESEM, and HRTEM. This study aims to track the change in morphological, compositional, average and local/electronic structures of Bi2Te3 of two different phases; nanostructure (thin film) and nanopowders (NPs). Bi2Te3 nanomaterial was fabricated as pellets using zone melting process in a one step process, while Bi2Te3 thin film was deposited on sodalime glass substrate using a vacuum thermal evaporation technique. Synchrotron radiation-based Bi LIII-edge fluorescence-mode X-ray absorption fine structure (XAFS) technique was performed to probe locally the electronic and fine structures of BT thin film around the Bi atom, while transmission-mode XAFS was used for BT NPs distributed in the PVP matrix. The structural features of the collected Bi LIII XANES spectra of thin film and powder samples of BT are compared with the simulated XANES spectrum of BT calculated using FDMNES code at 5 Å cluster size. Combining different off-line structural characterization techniques (XRD, FESEM, XPS, and HRTEM), along with those of synchrotron radiation-based techniques (XAFS and XRF) is necessary for complementary and supported average crystal, chemical, morphological and local electronic structural analyses for unveiling the variation between Bi2Te3 in the nanostructure/thin film and nanopowder morphology, and then connecting between the structural features and functions of BT in two different morphologies. After that, we measured the Seebeck coefficient and the power factor values for both the BT nanopowder and thin film.

3.
Int J Pharm ; 644: 123315, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37579827

RESUMEN

In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.


Asunto(s)
Antihelmínticos , Praziquantel , Animales , Ratones , Praziquantel/farmacología , Praziquantel/química , Niclosamida/farmacología , Antiparasitarios , Preparaciones Farmacéuticas , Espectroscopía Infrarroja por Transformada de Fourier , Antihelmínticos/farmacología , Antihelmínticos/química , Schistosoma mansoni
4.
Phys Chem Chem Phys ; 25(29): 20066-20075, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37462392

RESUMEN

Per- and polyfluorinated alkyl substances (PFAS) are anthropogenic compounds which have recently drawn great attention due to their high biological, chemical and physical stability and lipid/water repelling properties. The present work aims to provide for the first time insights on the thermal behaviour of Ag-exchanged Y zeolite loaded with perfluorooctanoic acid (PFOA, C8HF15O2) and perfluorooctane sulfonate (PFOS, C8HF17O3S) emphasizing the close link between crystal structure and desorption/dehydration processes. Elemental and isotopic abundance of carbon analysis, thermal analysis, and in situ high-temperature synchrotron X-ray powder diffraction were used to evaluate critically if the thermal regeneration affects the initial zeolites structural features. Rietveld refinements revealed that PFAS sites are emptied in the 550-650 °C temperature range, when the thermal degradation of PFOA and PFOS are reached. The crystallinity of the samples is not affected by the adsorption/desorption processes. Upon heating, the removal of both PFAS and coadsorbed water molecules induced a cation migration of the silver ions and changes of initial geometry of the framework. The dimensions of the channels remain comparable to those of the pristine materials thus suggesting the potential re-use of the samples in other adsorption PFAS cycles. Additionally, once regenerated and reloaded Ag-exchanged Y can re-adsorb PFAS in amounts comparable to that adsorbed in the first cycle with clear benefits on the costs of the whole water treatment process.

5.
Phys Chem Chem Phys ; 24(38): 23622-23633, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134477

RESUMEN

The structural, microstructural, Raman and ionic conductivity properties of (Gd,Sm)-doped ceria were studied and compared to the ones of similar ceria systems with the aim of deepening the comprehension of the correlations between defect chemistry and movement of oxygen vacancies in such materials, which are ideal candidates as electrolytes in solid oxide cells. The system was chosen as it combines the advantages of using the most effective doping ions for ceria, namely Sm3+ and Gd3+, and the expected positive effects of multiple doping. The main effect of double doping on the structure is the enlargement of the compositional region where ionic conductivity takes place, due to the entrance of the smaller doping ions into defect clusters, mainly trimers and dimers (RE ≡ rare earth). On the other hand, the formation of such clusters also affects ionic conductivity, as it causes the occurrence of a double activation energy with a temperature threshold located at ∼770 K. The dissociation of trimers above this temperature induces the appearance of a high temperature activation energy which is lower than the one observed in singly-doped systems, such as Sm- and Nd-doped ceria, showing the unique value of this parameter.

6.
Pharmaceutics ; 13(10)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34683899

RESUMEN

Two new solvates of the widely used anthelminthic Praziquantel (PZQ) were obtained through mechanochemical screening with different liquid additives. Specifically, 2-pyrrolidone and acetic acid gave solvates with 1:1 stoichiometry (PZQ-AA and PZQ-2P, respectively). A wide-ranging characterization of the new solid forms was carried out by means of powder X-ray diffraction, differential scanning calorimetry, FT-IR, solid-state NMR and biopharmaceutical analyses (solubility and intrinsic dissolution studies). Besides, the crystal structures of the two new solvates were solved from their Synchrotron-PXRD pattern: the solvates are isostructural, with equivalent triclinic packing. In both structures acetic acid and 2-pyrrolidone showed a strong interaction with the PZQ molecule via hydrogen bond. Even though previous studies have shown that PZQ is conformationally flexible, the same syn conformation as the PZQ Form A of the C=O groups of the piperazinone-cyclohexylcarbonyl segment is involved in these two new solid forms. In terms of biopharmaceutical properties, PZQ-AA and PZQ-2P exhibited water solubility and intrinsic dissolution rate much greater than those of anhydrous Form A.

7.
Bioorg Chem ; 114: 105131, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34243074

RESUMEN

Sets of 3-alkenyl-2-oxindoles (6,10,13) were synthesized in a facile synthetic pathway through acid dehydration (EtOH/HCl) of the corresponding 3-hydroxy-2-oxoindolines (5,9,12). Single crystal (10a,c) and powder (12a,26f) X-ray studies supported the structures. Compounds 6c and 10b are the most effective agents synthesized (about 3.4, 3.3 folds, respectively) against PaCa2 (pancreatic) cancer cell line relative to the standard reference used (Sunitinib). Additionally, compound 10b reveals antiproliferative properties against MCF7 (breast) cancer cell with IC50 close to that of Sunitinib. CAM testing reveals that compounds 6 and 10 demonstrated qualitative and quantitative decreases in blood vessel count and diameter with efficacy comparable to that of Sunitinib, supporting their anti-angiogenic properties. Kinase inhibitory properties support their multi-targeted inhibitory activities against VEGFR-2 and c-kit in similar behavior to that of Sunitinib. Cell cycle analysis studies utilizing MCF7 exhibit that compound 6b arrests the cell cycle at G1/S phase while, 10b reveals accumulation of the tested cell at S phase. Compounds 6a and 10b reveal potent antiviral properties against SARS-CoV-2 with high selectivity index relative to the standards (hydroxychloroquine, chloroquine). Safe profile of the potent synthesized agents, against normal cells (VERO-E6, RPE1), support the possible development of better hits based on the attained observations.


Asunto(s)
Antineoplásicos/farmacología , Antivirales/síntesis química , Oxindoles/síntesis química , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacología , Ciclo Celular , Línea Celular Tumoral , Embrión de Pollo , Chlorocebus aethiops , Humanos , Oxindoles/farmacología , Células Vero , Tratamiento Farmacológico de COVID-19
8.
ACS Appl Mater Interfaces ; 13(21): 25483-25492, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34006105

RESUMEN

The design of nanoporous perovskite oxides is considered an efficient strategy to develop performing, sustainable catalysts for the conversion of methane. The dependency of nanoporosity on the oxygen defect chemistry and the catalytic activity of perovskite oxides toward CH4 and CO oxidation was studied here. A novel colloidal synthesis route for nanoporous, high-temperature stable SrTi0.65Fe0.35O3-δ with specific surface areas (SSA) ranging from 45 to 80 m2/g and pore sizes from 10 to 100 nm was developed. High-temperature investigations by in situ synchrotron X-ray diffraction (XRD) and TG-MS combined with H2-TPR and Mössbauer spectroscopy showed that the porosity improved the release of surface oxygen and the oxygen diffusion, whereas the release of lattice oxygen depended more on the state of the iron species and strain effects in the materials. Regarding catalysis, light-off tests showed that low-temperature CO oxidation significantly benefitted from the enhancement of the SSA, whereas high-temperature CH4 oxidation is influenced more by the dioxygen release. During isothermal long-term catalysis tests, however, the continuous oxygen release from large SSA materials promoted both CO and CH4 conversion. Hence, if SSA maximization turned out to efficiently improve low-temperature and long-term catalysis applications, the role of both reducible metal center concentration and crystal structure cannot be completely ignored, as they also contribute to the perovskite oxygen release properties.

9.
Sci Rep ; 11(1): 7231, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790332

RESUMEN

A multi-instrumental approach combining highly sensitive Synchrotron Radiation-based techniques was used to provide information on the real composition of a dry black ink powder found in a bronze inkwell of the first century AD. The presence of Pb, Cu and Fe in the powder, revealed by XRF and ICP-OES data, leads to raise several hypotheses on their origin. The inkpot and its lid were also investigated by Hand-Held XRF, revealing a bronze alloy (Cu-Sn) with a certain amount of Fe and Pb. The lid was found to be particularly enriched in lead. XRPD, XAS and FTIR measurements showed a substantial presence of silicates and common clay minerals in the ink along with cerussite and malachite, Pb and Cu bearing-carbonates, respectively. These evidences support the hypothesis of an important contamination of the ink sample by the burial environment (soil) and the presence of degradation products of the bronze inkpot. The combined use of IR, Raman, and GC-MS evidenced that the black ink is mainly composed of amorphous carbon deriving from the combustion of organic material mixed with a natural binding agent, Arabic gum.

10.
Cryst Growth Des ; 21(1): 325-332, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33442331

RESUMEN

The asymmetric n-type Ph-BTBT-C10 derivative 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene S,S,S',S'-tetraoxide is structurally investigated in the thin film regime. After film preparation by spin coating and physical vapor deposition, a rather disordered structure is observed, with a strong change of its internal degree of order upon heating. At 95 °C, a transition into a layered structure of upright standing molecules without any in-plane order appears, and at 135 °C, crystallization takes place. This phase information is combined with surface morphological studies and charge carrier mobility measurements to describe the structure and thin film transistor applicability of this molecule.

11.
Nanomaterials (Basel) ; 10(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348614

RESUMEN

Pure and doped vanadia (VO2, V0.98Zr0.02O2, V0.98Ce0.02O2) samples were prepared by wet chemistry synthesis from vanadyl glycolate intermediate phase and tape casted into films. Combining in-operando grazing incidence synchrotron X-ray diffraction and Raman spectroscopy, we studied the structural evolution of the films under isothermal conditions. The setup allowed assessment of the thermochromic functionality with continuous monitoring of the monoclinic to tetragonal transition in pure and doped vanadia phases, responsible for the transmission and reflection of light in the infrared part of the solar spectrum. The materials characterisation by X-ray diffraction beamline (MCX) goniometer demonstrated ideal performance, combining flexible geometry, high resolution, and the potential to accommodate the multi-channel equipment for in-operando characterisation. This method proved viable for evaluating the relevant structural and physical, and thereof functional properties of these systems. We revealed that dopants reduce the transition temperature by 5 °C on average. The synthetic route of the films was held responsible for the observed phase separation. The more favourable behaviour of cerium-doped sample was attributed to cerium alkoxide behaviour. In addition, structural, microstructural, thermal, and spectroscopic characterisation on powder samples was performed to gain more insight into the development of the phases that are responsible for thermochromic features in a broader range of doping ratios. The influence of the dopants on the extent of the thermochromic transition (transmission to reflection hysteresis) was also evaluated using (micro) structural, thermal and spectroscopic methods of powder samples. Characterisations showed that zirconium doping in 2, 4, and 6 mol% significantly influenced the phase composition and morphology of the precursor. Vanadium oxides other than VO2 can easily crystallise; however, a thermal treatment regime that allowed crystallisation of VO2 as a single phase was established.

12.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143206

RESUMEN

The chiral (R)-10-hydroxystearic acid ((R)-10-HSA) is a positional homologue of both (R)-12-HSA and (R)-9-HSA with the OH group in an intermediate position. While (R)-12-HSA is one of the best-known low-molecular-weight organogelators, (R)-9-HSA is not, but it forms crystals in several solvents. With the aim to gain information on the structural role of hydrogen-bonding interactions of the carbinol OH groups, we investigated the behavior of (R)-10-HSA in various solvents. This isomer displays an intermediate behavior between (R)-9 and (R)-12-HSA, producing a stable gel exclusively in paraffin oil, while it crystallizes in other organic solvents. Here, we report the X-ray structure of a single crystal of (R)-10-HSA as well as some structural information on its polymorphism, obtained through X-ray Powder Diffraction (XRPD) and Infrared Spectroscopy (IR). This case study provides new elements to elucidate the structural determinants of the microscopic architectures that lead to the formation of organogels of stearic acid derivatives.


Asunto(s)
Cristalización , Geles/química , Solventes/química , Ácidos Esteáricos/química , Enlace de Hidrógeno , Peso Molecular , Estereoisomerismo
13.
ChemistryOpen ; 9(10): 977, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33024650

RESUMEN

Invited for this month's cover are the groups of Annalisa Martucci and Luisa Pasti at the University of Ferrara (Italy). The cover picture shows L-lysine amino acid adsorption on zeolite L. The role of zeolite channels in the stabilization of the lysine absorbed and the effect of water on protein structure are elucidated at atomistic level. The stabilization of the L α-helical conformation is related to strong H-bonds between the tail aminogroups of lysine molecules and the Brønsted acid site as well as to complex intermolecular H-bond system between water molecules, zeolite and amino acid. Read the full text of their Full Paper at 10.1002/open.202000183.


Asunto(s)
Lisina/química , Difracción de Neutrones , Sincrotrones , Difracción de Rayos X , Zeolitas/química , Adsorción , Enlace de Hidrógeno
14.
ChemistryOpen ; 9(10): 978-982, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33024651

RESUMEN

Combined neutron and X-ray powder diffraction techniques highlighted the sorption capacity of the acidic L zeolite towards the L-lysine amino acid. The role of zeolite channels in the stabilization of the lysine absorbed and the effect of water on protein structure are elucidated at atomistic level. The stabilization of the L α-helical conformation is related to strong H-bonds between the tail aminogroups of lysine molecules and the Brønsted acid site as well as to complex intermolecular H-bond system between water molecules, zeolite and amino acid. This finding is relevant in the catalytic synthesis of polypeptide, as well as in industrial biotechnology by qualitatively predicting binding behaviour.


Asunto(s)
Lisina/química , Difracción de Neutrones , Sincrotrones , Difracción de Rayos X , Zeolitas/química , Adsorción , Enlace de Hidrógeno , Estabilidad Proteica
15.
Dalton Trans ; 49(41): 14626-14639, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33057512

RESUMEN

The copper(ii) complexes of general formula [Cu(GL)(Cl)] (1-3, G = OMe, H and NO2, respectively), bearing tridentate Schiff base ligands (GL-) and a chloride as a fourth labile one, are here reported. The Schiff bases derive from the monocondensation of ethylenediamine and substituted salicylaldehyde, where the electronic properties are modulated by the releasing or withdrawing power of the G group. The compounds were structurally characterized through single crystal Synchrotron X-ray diffraction experiments in the solid state, revealing that 1 (OMe) and 2 (H) adopt a dimeric assembly [Cu(µ-Cl)(GL)]2 through apical interaction of the chloride ions of two monomeric units, while 3 embraces a 1D polymeric chain structure [Cu(µ-Cl)(NO2L)]n with a similar bridging fashion, all supported by extended intramolecular or intrachain hydrogen bonds. The redox properties of the complexes were also studied by cyclic voltammetry with no marked effect of the substituent on the potential of the CuII/CuI redox system. UV/Vis spectroscopic studies in mimicked physiological conditions highlighted the intactness and stability of the coordinated NNO tridentate ligand in 1-3 and the lability of the coordinated chloride ion with the formation of the aquo-complexes [Cu(GL)(H2O)]+ in aqueous solution, as confirmed by conductance measurements with a 1 : 1 electrolyte molar conductivity. In vitro tests on cell viability were conducted on malignant cell lines typical for their poor prognosis and curability, revealing time-dependent and differential cytotoxicity given by the substituent G. All compounds were capable of formation of intracellular reactive oxygen species and DNA intercalation, acting as nuclease and producing double-strand DNA breaks. This is especially effective for 3 (NO2), which revealed the highest anticancer activity against malignant triple-negative breast cancer MDA-MB-231 cells, with a two-to-four-fold cytotoxicity enhancement with respect to 1 (OMe) and 2 (H), and, most important, substantial differentiation of cytotoxicity with respect to healthy endothelial HUVEC cell line.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Electrones , Bases de Schiff/química , Línea Celular Tumoral , Humanos , Ligandos
16.
Eur J Pharm Sci ; 140: 105084, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31626966

RESUMEN

A rotated Doehlert matrix was utilized to explore the experimental design space around the milling parameters of Praziquantel (PZQ) polymorph B formation in terms of frequency and milling time. Three experimental responses were evaluated on the resulting ground samples: two quantitative responses, i.e. median particle size by Laser Light scattering (LLS) and drug recovery by HPLC, and one qualitative dependent variable, i.e. the obtained PZQ crystalline form, characterized through X-Ray Powder Diffraction (XRPD) and confirmed by Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). Temperature inside the jars was kept under constant control during the milling process by using temperature sensor equipped jars (thermojars), thus allowing evaluation of the obtained solid states at each experimental point, considering the specific temperature of the process. This explorative analysis led to the finding of a novel PZQ polymorph, named "Form C", produced without degradation, then fully characterized, including by means of Synchrotron XRPD, Polarimetric, FT-IR, SS-NMR, ESEM and saturation solubility. Crystal structure was solved from XRPD data and its geometry was optimized by DFT calculations (CASTEP). Finally, Form C and Form A activity against adult schistosoma mansoni were compared through in vitro testing, and Form C's physical stability checked. The new polymorph, crystallizing in space group I2/c, physically stable for approximately 2 months, showed a m.p. of 106.84 °C and displayed excellent biopharmaceutical properties (water solubility of 382.69±9.26 mg/l), while preserving excellent activity levels against adult schistosoma mansoni.


Asunto(s)
Praziquantel/química , Praziquantel/farmacología , Difracción de Rayos X/métodos , Animales , Química Farmacéutica/métodos , Simulación por Computador , Cristalización/métodos , Teoría Funcional de la Densidad , Femenino , Ratones , Modelos Moleculares , Conformación Molecular , Tamaño de la Partícula , Polvos/química , Schistosoma mansoni/efectos de los fármacos , Programas Informáticos , Solubilidad , Temperatura
17.
Sci Rep ; 9(1): 15159, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641160

RESUMEN

Since their first appearance, organic-inorganic perovskite absorbers have been capturing the attention of the scientific community. While high efficiency devices highlight the importance of band level alignment, very little is known on the origin of the strong n-doping character observed in the perovskite. Here, by means of a highly accurate photoemission study, we shed light on the energy alignment in perovskite-based devices. Our results suggest that the interaction with the substrate may be the driver for the observed doping in the perovskite samples.

18.
Molecules ; 24(15)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390777

RESUMEN

(R)-9-hydroxystearic acid, (R)-9-HSA, is a chiral nonracemic hydroxyacid of natural origin possessing interesting properties as an antiproliferative agent against different cancer types. Considering its potential application for medical and pharmaceutical purposes, the structures and rheological properties of (R)-9-HSA were investigated. Oscillatory rheology measurements reveal that (R)-9-HSA gels only paraffin oil, with less efficiency and thermal stability than its positional isomer (R)-12-HSA. Conversely, (R)-9-HSA affords crystals from methanol, acetonitrile, and carbon tetrachloride. The single crystal structures obtained both at 293 K and 100 K show non-centrosymmetric twisted carboxylic acid dimers linked at the midchain OHs into long, unidirectional chains of hydrogen bonds, owing to head-tail ordering of the molecules. Synchrotron X-ray powder diffraction experiments, performed on the solids obtained from different solvents, show the occurrence of polymorphism in paraffin oil and through thermal treatment of the solid from methanol.


Asunto(s)
Ácidos Esteáricos/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Reología , Solventes/química , Análisis Espectral , Difracción de Rayos X
19.
Analyst ; 143(18): 4290-4297, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30087967

RESUMEN

Many works of art are complex systems consisting of a core completed by the overlapping of several painted layers. In this work, we apply an innovative method based on grazing incidence X-ray diffraction (GIXRD) with synchrotron radiation (SR) to investigate polychrome stratigraphies with a completely non-destructive approach. The SR-GIXRD measurements provided direct and unambiguous compositional and stratigraphic information of the crystalline species lying in different layers. The investigations performed on a small fragment sampled from a painted terracotta statue allowed the identification of pigments, fillers, aggregates of the matrix and newly formed decay salts in micrometric-thin paint layers. Furthermore, the great potentiality of this study is the feasibility of depth profile investigations on multi-layered painted samples from cultural heritage objects without resorting to cross sectional analyses. Currently, the method is non-destructive but it can be potentially non-invasive in situations where small moveable artworks can be placed into the measurement chamber of the SR-XRD beamlines. The overall study paves the way to a new scenario of artwork investigations, shedding light on new unexplored approaches for non-destructive studies of cultural heritage objects, their conservation history and their interaction with the environment.

20.
Eur J Pharm Biopharm ; 127: 19-28, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29409939

RESUMEN

Praziquantel is the only available drug to treat Schistosomiasis. However, its utilization is limited by many drawbacks, including the high therapeutic dose needed, resulting in large tablets and capsules difficult to be swallowed, especially from pediatric patients. In this study, an alternative option to overcome these disadvantages is proposed: to switch to a novel crystalline polymorph of racemic compound praziquantel. The preparation of the crystalline polymorph was realized via a neat grinding process in a vibrational mill. The new phase (Form B) was chemically identical to the starting material (as proved by HPLC, 1H NMR, and polarimetry), but showed different physical properties (as evaluated by SEM, differential scanning calorimetry, thermogravimetry, ATR-FTIR spectroscopy, X-ray powder diffraction, and solid-state NMR). Furthermore, the crystal structure of the new phase was solved from the powder synchrotron X-ray diffraction pattern, resulting in a monoclinic C2/c cell and validated by DFT-D calculation. Moreover the simulated solid-state NMR 13C chemical shifts were in excellent agreement with the experimental data. The conversion of original praziquantel into Form B showed to affect positively the water solubility and the intrinsic dissolution rate of praziquantel. Both the in vitro and in vivo activity against Schistosoma mansoni were maintained. Our findings suggest that the new phase, that proved to be physically stable for at least one year, is a promising product for designing a new praziquantel formulation.


Asunto(s)
Praziquantel/química , Praziquantel/farmacología , Animales , Rastreo Diferencial de Calorimetría/métodos , Cápsulas/química , Cápsulas/farmacología , Cristalización/métodos , Polvos/química , Polvos/farmacología , Schistosoma mansoni/efectos de los fármacos , Solubilidad/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Comprimidos/química , Comprimidos/farmacología , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...