Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Reprod Fertil ; 5(2)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513356

RESUMEN

Abstract: Although numerous studies have demonstrated the impact of microbiome manipulation on human health, research on the microbiome's influence on female health remains relatively limited despite substantial disease burden. In light of this, we present a selected review of clinical trials and preclinical studies targeting both the vaginal and gut microbiomes for the prevention or treatment of various gynecologic conditions. Specifically, we explore studies that leverage microbiota transplants, probiotics, prebiotics, diet modifications, and engineered microbial strains. A healthy vaginal microbiome for females of reproductive age consists of lactic acid-producing bacteria predominantly of the Lactobacillus genus, which serves as a protective barrier against pathogens and maintains a balanced ecosystem. The gut microbiota's production of short-chain fatty acids, metabolism of primary bile acids, and modulation of sex steroid levels have significant implications for the interplay between host and microbes throughout the body, ultimately impacting reproductive health. By harnessing interventions that modulate both the vaginal and gut microbiomes, it becomes possible to not only maintain homeostasis but also mitigate pathological conditions. While the field is still working toward making broad clinical recommendations, the current studies demonstrate that manipulating the microbiome holds great potential for addressing diverse gynecologic conditions. Lay summary: Manipulating the microbiome has recently entered popular culture, with various diets thought to aid the microbes that live within us. These microbes live in different locations of our body and accordingly help us digest food, modulate our immune system, and influence reproductive health. The role of the microbes living in and influencing the female reproductive tract remains understudied despite known roles in common conditions such as vulvovaginal candidiasis (affecting 75% of females in their lifetime), bacterial vaginosis (25% of females in their lifetime), cervical HPV infection (80% of females in their lifetime), endometriosis (6-10% of females of reproductive age), and polycystic ovary syndrome (10-12% of females of reproductive age). Here, we review four different approaches used to manipulate the female reproductive tract and gastrointestinal system microbiomes: microbiota transplants, probiotics, prebiotics, and dietary interventions, and the use of engineered microbial strains. In doing so, we aim to stimulate discussion on new ways to understand and treat female reproductive health conditions.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Femenino , Humanos , Animales , Probióticos/uso terapéutico , Prebióticos , Reproducción
2.
ACS Chem Biol ; 18(9): 1926-1937, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37084287

RESUMEN

Sulfur(VI) fluorides (SFs) have emerged as valuable electrophiles for the design of "beyond-cysteine" covalent inhibitors and offer potential for expansion of the liganded proteome. Since SFs target a broad range of nucleophilic amino acids, they deliver an approach for the covalent modification of proteins without requirement for a proximal cysteine residue. Further to this, libraries of reactive fragments present an innovative approach for the discovery of ligands and tools for proteins of interest by leveraging a breadth of mass spectrometry analytical approaches. Herein, we report a screening approach that exploits the unique properties of SFs for this purpose. Libraries of SF-containing reactive fragments were synthesized, and a direct-to-biology workflow was taken to efficiently identify hit compounds for CAII and BCL6. The most promising hits were further characterized to establish the site(s) of covalent modification, modification kinetics, and target engagement in cells. Crystallography was used to gain a detailed molecular understanding of how these reactive fragments bind to their target. It is anticipated that this screening protocol can be used for the accelerated discovery of "beyond-cysteine" covalent inhibitors.


Asunto(s)
Cisteína , Fluoruros , Cisteína/química , Ligandos , Aminoácidos , Azufre
3.
ACS Chem Biol ; 18(2): 285-295, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36649130

RESUMEN

Here, we report a comprehensive profiling of sulfur(VI) fluorides (SVI-Fs) as reactive groups for chemical biology applications. SVI-Fs are reactive functionalities that modify lysine, tyrosine, histidine, and serine sidechains. A panel of SVI-Fs were studied with respect to hydrolytic stability and reactivity with nucleophilic amino acid sidechains. The use of SVI-Fs to covalently modify carbonic anhydrase II (CAII) and a range of kinases was then investigated. Finally, the SVI-F panel was used in live cell chemoproteomic workflows, identifying novel protein targets based on the type of SVI-F used. This work highlights how SVI-F reactivity can be used as a tool to expand the liganded proteome.


Asunto(s)
Fluoruros , Proteoma , Proteoma/metabolismo , Fluoruros/química , Azufre/química , Aminoácidos/química , Biología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...