Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
mBio ; 15(2): e0216923, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38236051

RESUMEN

Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is necessary and sufficient for exclusion by the SieA system and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants that overcome the SieA block were isolated, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single-amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in phage target specificity. Our data strongly suggest a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.IMPORTANCEThe ongoing evolutionary battle between bacteria and the viruses that infect them is a critical feature of bacterial ecology on Earth. Viruses can kill bacteria by infecting them. However, when their chromosomes are integrated into a bacterial genome as a prophage, viruses can also protect the host bacterium by expressing genes whose products defend against infection by other viruses. This defense property is called "superinfection exclusion." A significant fraction of bacteria harbor prophages that encode such protective systems, and there are many different molecular strategies by which superinfection exclusion is mediated. This report is the first to describe the mechanism by which bacteriophage P22 SieA superinfection exclusion protein protects its host bacterium from infection by other P22-like phages. The P22 prophage-encoded inner membrane SieA protein prevents infection by blocking transport of superinfecting phage DNA across the inner membrane during injection.


Asunto(s)
Bacteriófago P22 , Bacteriófagos , Sobreinfección , Humanos , Bacteriófago P22/genética , Bacteriófagos/genética , Profagos/genética , Profagos/metabolismo , Proteínas de la Membrana/metabolismo , ADN/metabolismo , Aminoácidos/metabolismo
2.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645741

RESUMEN

Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is the only phage protein required for exclusion by the SieA system, and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants were isolated that overcome the SieA block, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in target specificity. Our data are consistent with a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.

3.
Front Microbiol ; 14: 1100607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876079

RESUMEN

Bacteriophage KL-2146 is a lytic virus isolated to infect Klebsiella pneumoniae BAA2146, a pathogen carrying the broad range antibiotic resistance gene New Delhi metallo-betalactamase-1 (NDM-1). Upon complete characterization, the virus is shown to belong to the Drexlerviridae family and is a member of the Webervirus genus located within the (formerly) T1-like cluster of phages. Its double-stranded (dsDNA) genome is 47,844 bp long and is predicted to have 74 protein-coding sequences (CDS). After challenging a variety of K. pneumoniae strains with phage KL-2146, grown on the NDM-1 positive strain BAA-2146, polyvalence was shown for a single antibiotic-sensitive strain, K. pneumoniae 13,883, with a very low initial infection efficiency in liquid culture. However, after one or more cycles of infection in K. pneumoniae 13,883, nearly 100% infection efficiency was achieved, while infection efficiency toward its original host, K. pneumoniae BAA-2146, was decreased. This change in host specificity is reversible upon re-infection of the NDM-1 positive strain (BAA-2146) using phages grown on the NDM-1 negative strain (13883). In biofilm infectivity experiments, the polyvalent nature of KL-2146 was demonstrated with the killing of both the multidrug-resistant K. pneumoniae BAA-2146 and drug-sensitive 13,883 in a multi-strain biofilm. The ability to infect an alternate, antibiotic-sensitive strain makes KL-2146 a useful model for studying phages infecting the NDM-1+ strain, K. pneumoniae BAA-2146. GRAPHICAL ABSTRACT.

4.
Microbiol Mol Biol Rev ; 86(4): e0012421, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36165780

RESUMEN

Laboratory-generated hybrids between phage λ and related phages played a seminal role in establishment of the λ model system, which, in turn, served to develop many of the foundational concepts of molecular biology, including gene structure and control. Important λ hybrids with phages 21 and 434 were the earliest of such phages. To understand the biology of these hybrids in full detail, we determined the complete genome sequences of phages 21 and 434. Although both genomes are canonical members of the λ-like phage family, they both carry unsuspected bacterial virulence gene types not previously described in this group of phages. In addition, we determined the sequences of the hybrid phages λ imm21, λ imm434, and λ h434 imm21. These sequences show that the replacements of λ DNA by nonhomologous segments of 21 or 434 DNA occurred through homologous recombination in adjacent sequences that are nearly identical in the parental phages. These five genome sequences correct a number of errors in published sequence fragments of the 21 and 434 genomes, and they point out nine nucleotide differences from Sanger's original λ sequence that are likely present in most extant λ strains in laboratory use today. We discuss the historical importance of these hybrid phages in the development of fundamental tenets of molecular biology and in some of the earliest gene cloning vectors. The 434 and 21 genomes reinforce the conclusion that the genomes of essentially all natural λ-like phages are mosaics of sequence modules from a pool of exchangeable segments.


Asunto(s)
Bacteriófago lambda , Vigor Híbrido , Bacteriófago lambda/genética , Biología Molecular
5.
Microbiol Resour Announc ; 11(5): e0012022, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412353

RESUMEN

Recombinational hybrids between phage λ and its relatives were instrumental in the beginnings of molecular biology. Here, we report the complete genome sequences of lambdoid phages 21 and 434 and three of their λ hybrids. In addition, we describe 434B, where the entire lysis gene region was replaced by cryptic prophage sequences.

6.
Viruses ; 13(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34452369

RESUMEN

Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal protein barrel in DNA-filled heads. In this report we show that when these proteins are missing from the virion, a longer than normal DNA molecule is encapsidated by the P22 headful DNA packaging machinery. Thus, the ejection proteins occupy positions within the virion that can be occupied by packaged DNA when they are absent.


Asunto(s)
Bacteriófago P22/genética , ADN Viral/genética , Proteínas Virales/genética , Virión/genética , Bacteriófago P22/química , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Empaquetamiento del ADN , ADN Viral/metabolismo , Técnicas Genéticas , Proteínas Virales/metabolismo
7.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912919

RESUMEN

We report the complete genome sequence of P22-like Salmonella enterica serovar Typhimurium phage MG40, whose prophage repressor specificity is different from that of other known temperate phages.

8.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462565

RESUMEN

We present the genome sequences of Salmonella enterica tailed phages Sasha, Sergei, and Solent. These phages, along with Salmonella phages 9NA, FSL_SP-062, and FSL_SP-069 and the more distantly related Proteus phage PmiS-Isfahan, have similarly sized genomes of between 52 and 57 kbp in length that are largely syntenic. Their genomes also show substantial genome mosaicism relative to one another, which is common within tailed phage clusters. Their gene content ranges from 80 to 99 predicted genes, of which 40 are common to all seven and form the core genome, which includes all identifiable virion assembly and DNA replication genes. The total number of gene types (pangenome) in the seven phages is 176, and 59 of these are unique to individual phages. Their core genomes are much more closely related to one another than to the genome of any other known phage, and they comprise a well-defined cluster within the family Siphoviridae To begin to characterize this group of phages in more experimental detail, we identified the genes that encode the major virion proteins and examined the DNA packaging of the prototypic member, phage 9NA. We show that it uses a pac site-directed headful packaging mechanism that results in virion chromosomes that are circularly permuted and about 13% terminally redundant. We also show that its packaging series initiates with double-stranded DNA cleavages that are scattered across a 170-bp region and that its headful measuring device has a precision of ±1.8%.IMPORTANCE The 9NA-like phages are clearly highly related to each other but are not closely related to any other known phage type. This work describes the genomes of three new 9NA-like phages and the results of experimental analysis of the proteome of the 9NA virion and DNA packaging into the 9NA phage head. There is increasing interest in the biology of phages because of their potential for use as antibacterial agents and for their ecological roles in bacterial communities. 9NA-like phages that infect two bacterial genera have been identified to date, and related phages infecting additional Gram-negative bacterial hosts are likely to be found in the future. This work provides a foundation for the study of these phages, which will facilitate their study and potential use.


Asunto(s)
Empaquetamiento del ADN/genética , Fagos de Salmonella/genética , Salmonella/virología , Empaquetamiento del ADN/fisiología , Replicación del ADN , ADN Viral/genética , Genoma/genética , Genoma Viral/genética , Genómica/métodos , Filogenia , Salmonella/genética , Salmonella/metabolismo , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virales/genética , Virión/genética
9.
Elife ; 82019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30945633

RESUMEN

The major coat proteins of dsDNA tailed phages (order Caudovirales) and herpesviruses form capsids by a mechanism that includes active packaging of the dsDNA genome into a precursor procapsid, followed by expansion and stabilization of the capsid. These viruses have evolved diverse strategies to fortify their capsids, such as non-covalent binding of auxiliary 'decoration' (Dec) proteins. The Dec protein from the P22-like phage L has a highly unusual binding strategy that distinguishes between nearly identical three-fold and quasi-three-fold sites of the icosahedral capsid. Cryo-electron microscopy and three-dimensional image reconstruction were employed to determine the structure of native phage L particles. NMR was used to determine the structure/dynamics of Dec in solution. The NMR structure and the cryo-EM density envelope were combined to build a model of the capsid-bound Dec trimer. Key regions that modulate the binding interface were verified by site-directed mutagenesis.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Caudovirales/fisiología , Ensamble de Virus , Cápside/ultraestructura , Caudovirales/ultraestructura , Microscopía por Crioelectrón , ADN Viral/metabolismo , Imagenología Tridimensional , Espectroscopía de Resonancia Magnética , Unión Proteica , Multimerización de Proteína
10.
Viruses ; 10(6)2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843473

RESUMEN

Gram-negative bacteria protect themselves with an outermost layer containing lipopolysaccharide (LPS). O-antigen-specific bacteriophages use tailspike proteins (TSP) to recognize and cleave the O-polysaccharide part of LPS. However, O-antigen composition and structure can be highly variable depending on the environmental conditions. It is important to understand how these changes may influence the early steps of the bacteriophage infection cycle because they can be linked to changes in host range or the occurrence of phage resistance. In this work, we have analyzed how LPS preparations in vitro trigger particle opening and DNA ejection from the E. coli podovirus HK620. Fluorescence-based monitoring of DNA release showed that HK620 phage particles in vitro ejected their genome at velocities comparable to those found for other podoviruses. Moreover, we found that HK620 irreversibly adsorbed to the LPS receptor via its TSP at restrictive low temperatures, without opening the particle but could eject its DNA at permissive temperatures. DNA ejection was solely stimulated by LPS, however, the composition of the O-antigen dictated whether the LPS receptor could start the DNA release from E. coli phage HK620 in vitro. This finding can be significant when optimizing bacteriophage mixtures for therapy, where in natural environments O-antigen structures may rapidly change.


Asunto(s)
ADN Viral/metabolismo , Lipopolisacáridos/farmacología , Podoviridae/efectos de los fármacos , Podoviridae/genética , Bacteriófago P22/genética , Escherichia coli/virología , Glicósido Hidrolasas , Temperatura , Proteínas de la Cola de los Virus/metabolismo
11.
Biophys J ; 114(6): 1295-1301, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29590587

RESUMEN

Genome ejection proteins are required to facilitate transport of bacteriophage P22 double-stranded DNA safely through membranes of Salmonella. The structures and locations of all proteins in the context of the mature virion are known, with the exception of three ejection proteins. Furthermore, the changes that occur to the proteins residing in the mature virion upon DNA release are not fully understood. We used cryogenic electron microscopy to obtain what is, to our knowledge, the first asymmetric reconstruction of mature bacteriophage P22 after double-stranded DNA has been extruded from the capsid-a state representative of one step during viral infection. Results of icosahedral and asymmetric reconstructions at estimated resolutions of 7.8 and 12.5 Å resolutions, respectively, are presented. The reconstruction shows tube-like protein density extending from the center of the tail assembly. The portal protein does not revert to the more contracted, procapsid state, but instead maintains an extended and splayed barrel structure. These structural details contribute to our understanding of the molecular mechanism of P22 phage infection and also set the foundation for future exploitation serving engineering purposes.


Asunto(s)
Bacteriófago P22/genética , Bacteriófago P22/ultraestructura , Microscopía por Crioelectrón , Genoma Viral/genética , Virión/genética , Virión/ultraestructura , ADN Viral/metabolismo
12.
Mol Microbiol ; 108(3): 288-305, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29470858

RESUMEN

Bacteriophages rely on their hosts for replication, and many host genes critically determine either viral progeny production or host success via phage resistance. A random insertion transposon library of 240,000 mutants in Salmonella enterica serovar Typhimurium was used to monitor effects of individual bacterial gene disruptions on bacteriophage P22 lytic infection. These experiments revealed candidate host genes that alter the timing of phage P22 propagation. Using a False Discovery Rate of < 0.1, mutations in 235 host genes either blocked or delayed progression of P22 lytic infection, including many genes for which this role was previously unknown. Mutations in 77 genes reduced the survival time of host DNA after infection, including mutations in genes for enterobacterial common antigen (ECA) synthesis and osmoregulated periplasmic glucan (OPG). We also screened over 2000 Salmonella single gene deletion mutants to identify genes that impacted either plaque formation or culture growth rates. The gene encoding the periplasmic membrane protein YajC was newly found to be essential for P22 infection. Targeted mutagenesis of yajC shows that an essentially full-length protein is required for function, and potassium efflux measurements demonstrated that YajC is critical for phage DNA ejection across the cytoplasmic membrane.


Asunto(s)
Bacteriófago P22/genética , Lisogenia/genética , Salmonella typhimurium/genética , Bacteriófago P22/patogenicidad , Elementos Transponibles de ADN/genética , Eliminación de Gen , Pruebas Genéticas/métodos , Lisogenia/fisiología , Mutación , Salmonella/genética , Fagos de Salmonella/patogenicidad , Transducción Genética
13.
Virology ; 515: 203-214, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29304472

RESUMEN

The temperate Escherichia coli bacteriophage D6 can exist as a circular plasmid prophage, and we report here its 91,159bp complete genome sequence. It is a distant relative of the well-studied phage P1, but it is sufficiently different that it typifies a previously undescribed tailed phage type or cluster. Examination of the database of bacterial genome sequences revealed that phage P1 and D6 prophage plasmids are common in the Enterobacteriales, and in addition, previously described Salmonella phage SSU5 represents a different type of temperate tailed phage with a circular plasmid prophage that is also very common in this host order. This analysis also discovered additional divergent clusters of putative circular plasmid prophages within the two larger P1 and SSU5 groups (superclusters) that inhabit the Enterobacteriales as well as bacteria in several other orders in the Gamma-proteobacteria class. Very few of these sequences are annotated as putative prophages.


Asunto(s)
Bacteriófagos/genética , Escherichia coli/virología , Genoma Viral , Plásmidos/genética , Profagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Plásmidos/metabolismo , Profagos/clasificación , Profagos/aislamiento & purificación , Análisis de Secuencia de ADN
14.
Stand Genomic Sci ; 12: 82, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29270250

RESUMEN

A lytic bacteriophage RG-2014 infecting a biofilm forming multidrug resistant bacterium Delftia tsuruhatensis strain ARB-1 as its host was isolated from a full-scale municipal wastewater treatment plant. Lytic phage RG-2014 was isolated for developing phage based therapeutic approaches against Delftia tsuruhatensis strain ARB-1. The strain ARB-1 belongs to the Comamonadaceae family of the Betaproteobacteria class. RG-2014 was characterized for its type, burst size, latent and eclipse time periods of 150 ± 9 PFU/cell, 10-min, <5-min, respectively. The phage was found to be a dsDNA virus belonging to the Podoviridae family. It has an isometric icosahedrally shaped capsid with a diameter of 85 nm. The complete genome of the isolated phage was sequenced and determined to be 73.8 kbp in length with a G + C content of 59.9%. Significant similarities in gene homology and order were observed between Delftia phage RG-2014 and the E. coli phage N4 indicating that it is a member of the N4-like phage group.

15.
Genome Announc ; 5(13)2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28360173

RESUMEN

Escherichia coli bacteriophage Utah is a member of the chi-like tailed phage cluster in the Siphoviridae family. We report here the complete 59,024-bp sequence of the genome of phage Utah.

16.
BMC Genomics ; 18(1): 165, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28201991

RESUMEN

BACKGROUND: Bacteria from the genus Borrelia are known to harbor numerous linear and circular plasmids. We report here a comparative analysis of the nucleotide sequences of 236 plasmids present in fourteen independent isolates of the Lyme disease agent B. burgdorferi. RESULTS: We have sequenced the genomes of 14 B. burgdorferi sensu stricto isolates that carry a total of 236 plasmids. These individual isolates carry between seven and 23 plasmids. Their chromosomes, the cp26 and cp32 circular plasmids, as well as the lp54 linear plasmid, are quite evolutionarily stable; however, the remaining plasmids have undergone numerous non-homologous and often duplicative recombination events. We identify 32 different putative plasmid compatibility types among the 236 plasmids, of which 15 are (usually) circular and 17 are linear. Because of past rearrangements, any given gene, even though it might be universally present in these isolates, is often found on different linear plasmid compatibility types in different isolates. For example, the arp gene and the vls cassette region are present on plasmids of four and five different compatibility types, respectively, in different isolates. A majority of the plasmid types have more than one organizationally different subtype, and the number of such variants ranges from one to eight among the 18 linear plasmid types. In spite of this substantial organizational diversity, the plasmids are not so variable that every isolate has a novel version of every plasmid (i.e., there appears to be a limited number of extant plasmid subtypes). CONCLUSIONS: Although there have been many past recombination events, both homologous and nonhomologous, among the plasmids, particular organizational variants of these plasmids correlate with particular chromosomal genotypes, suggesting that there has not been rapid horizontal transfer of whole linear plasmids among B. burgdorferi lineages. We argue that plasmid rearrangements are essentially non-revertable and are present at a frequency of only about 0.65% that of single nucleotide changes, making rearrangement-derived novel junctions (mosaic boundaries) ideal phylogenetic markers in the study of B. burgdorferi population structure and plasmid evolution and exchange.


Asunto(s)
Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiología , Variación Genética , Genómica , Enfermedad de Lyme/microbiología , Filogenia , Plásmidos/genética , Cromosomas Bacterianos/genética , Genoma Bacteriano/genética
17.
mBio ; 7(4)2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27507825

RESUMEN

UNLABELLED: The P22 capsid is a T=7 icosahedrally symmetric protein shell with a portal protein dodecamer at one 5-fold vertex. Extending outwards from that vertex is a short tail, and putatively extending inwards is a 15-nm-long α-helical barrel formed by the C-terminal domains of portal protein subunits. In addition to the densely packed genome, the capsid contains three "ejection proteins" (E-proteins [gp7, gp16, and gp20]) destined to exit from the tightly sealed capsid during the process of DNA delivery into target cells. We estimated their copy numbers by quantitative SDS-PAGE as approximately 12 molecules per virion of gp16 and gp7 and 30 copies of gp20. To localize them, we used bubblegram imaging, an adaptation of cryo-electron microscopy in which gaseous bubbles induced in proteins by prolonged irradiation are used to map the proteins' locations. We applied this technique to wild-type P22, a triple mutant lacking all three E-proteins, and three mutants each lacking one E-protein. We conclude that all three E-proteins are loosely clustered around the portal axis, in the region displaced radially inwards from the portal crown. The bubblegram data imply that approximately half of the α-helical barrel seen in the portal crystal structure is disordered in the mature virion, and parts of the disordered region present binding sites for E-proteins. Thus positioned, the E-proteins are strategically placed to pass down the shortened barrel and through the portal ring and the tail, as they exit from the capsid during an infection. IMPORTANCE: While it has long been appreciated that capsids serve as delivery vehicles for viral genomes, there is now growing awareness that viruses also deliver proteins into their host cells. P22 has three such proteins (ejection proteins [E-proteins]), whose initial locations in the virion have remained unknown despite their copious amounts (total of 2.5 MDa). This study succeeded in localizing them by the novel technique of bubblegram imaging. The P22 E-proteins are seen to be distributed around the orifice of the portal barrel. Interestingly, this barrel, 15 nm long in a crystal structure, is only about half as long in situ: the remaining, disordered, portion appears to present binding sites for E-proteins. These observations document a spectacular example of a regulatory order-disorder transition in a supramolecular system and demonstrate the potential of bubblegram imaging to map the components of other viruses as well as cellular complexes.


Asunto(s)
Bacteriófago P22/química , Microscopía por Crioelectrón , Proteínas Virales/análisis , Virión/química , Bacteriófago P22/ultraestructura , Modelos Biológicos , Virión/ultraestructura
18.
Virology ; 464-465: 55-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25043589

RESUMEN

CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the "HK97-fold" shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain ("I-domain"), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphology of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently.


Asunto(s)
Bacteriófagos/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Virión/ultraestructura , Secuencia de Aminoácidos , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/ultraestructura , Secuencia Conservada , Microscopía por Crioelectrón , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Estructura Terciaria de Proteína , Virión/química , Virión/genética , Virión/metabolismo
19.
Mol Microbiol ; 92(1): 47-60, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24673644

RESUMEN

Despite being essential for successful infection, the molecular cues involved in host recognition and genome transfer of viruses are not completely understood. Bacterial outer membrane proteins A and C co-purify in lipid vesicles with bacteriophage Sf6, implicating both outer membrane proteins as potential host receptors. We determined that outer membrane proteins A and C mediate Sf6 infection by dramatically increasing its rate and efficiency. We performed a combination of in vivo studies with three omp null mutants of Shigella flexneri, including classic phage plaque assays and time-lapse fluorescence microscopy to monitor genome ejection at the single virion level. Cryo-electron tomography of phage 'infecting' outer membrane vesicles shows the tail needle contacting and indenting the outer membrane. Lastly, in vitro ejection studies reveal that lipopolysaccharide and outer membrane proteins are both required for Sf6 genome release. We conclude that Sf6 phage entry utilizes either outer membrane proteins A or C, with outer membrane protein A being the preferred receptor.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteriófagos/crecimiento & desarrollo , Lipopolisacáridos/metabolismo , Shigella flexneri/genética , Shigella flexneri/virología , Proteínas de la Membrana Bacteriana Externa/genética , Bacteriófagos/ultraestructura , Tomografía con Microscopio Electrónico , Genoma Viral , Microscopía Fluorescente , Mutación , Shigella flexneri/metabolismo , Virión/fisiología
20.
PLoS One ; 8(8): e70936, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951045

RESUMEN

The P22-like bacteriophages have short tails. Their virions bind to their polysaccharide receptors through six trimeric tailspike proteins that surround the tail tip. These short tails also have a trimeric needle protein that extends beyond the tailspikes from the center of the tail tip, in a position that suggests that it should make first contact with the host's outer membrane during the infection process. The base of the needle serves as a plug that keeps the DNA in the virion, but role of the needle during adsorption and DNA injection is not well understood. Among the P22-like phages are needle types with two completely different C-terminal distal tip domains. In the phage Sf6-type needle, unlike the other P22-type needle, the distal tip folds into a "knob" with a TNF-like fold, similar to the fiber knobs of bacteriophage PRD1 and Adenovirus. The phage HS1 knob is very similar to that of Sf6, and we report here its crystal structure which, like the Sf6 knob, contains three bound L-glutamate molecules. A chimeric P22 phage with a tail needle that contains the HS1 terminal knob efficiently infects the P22 host, Salmonella enterica, suggesting the knob does not confer host specificity. Likewise, mutations that should abrogate the binding of L-glutamate to the needle do not appear to affect virion function, but several different other genetic changes to the tip of the needle slow down potassium release from the host during infection. These findings suggest that the needle plays a role in phage P22 DNA delivery by controlling the kinetics of DNA ejection into the host.


Asunto(s)
Bacteriófago P22/fisiología , ADN Viral , Salmonella enterica/virología , Transducción Genética , Proteínas de la Cola de los Virus/fisiología , Bacteriófago P22/clasificación , Ácido Glutámico/metabolismo , Modelos Moleculares , Filogenia , Potasio/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas de la Cola de los Virus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA