Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(3): 1577-1588, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38194437

RESUMEN

Antarctica, protected by its strong polar vortex and sheer distance from anthropogenic activity, was always thought of as pristine. However, as more data on the occurrence of persistent organic pollutants on Antarctica emerge, the question arises of how fast the long-range atmospheric transport takes place. Therefore, polycyclic aromatic hydrocarbons (PAHs) and oxygenated (oxy-)PAHs were sampled from the atmosphere and measured during 4 austral summers from 2017 to 2021 at the Princess Elisabeth station in East Antarctica. The location is suited for this research as it is isolated from other stations and activities, and the local pollution of the station itself is limited. A high-volume sampler was used to collect the gas and particle phase (PM10) separately. Fifteen PAHs and 12 oxy-PAHs were quantified, and concentrations ranging between 6.34 and 131 pg m3 (Σ15PAHs-excluding naphthalene) and between 18.8 and 114 pg m3 (Σ13oxy-PAHs) were found. Phenanthrene, pyrene, and fluoranthene were the most abundant PAHs. The gas-particle partitioning coefficient log(Kp) was determined for 6 compounds and was found to lie between 0.5 and -2.5. Positive matrix factorization modeling was applied to the data set to determine the contribution of different sources to the observed concentrations. A 6-factor model proved a good fit to the data set and showed strong variations in the contribution of different air masses. During the sampling campaign, a number of volcanic eruptions occurred in the southern hemisphere from which the emission plume was detected. The FLEXPART dispersion model was used to confirm that the recorded signal is indeed influenced by volcanic eruptions. The data was used to derive a transport time of between 11 and 33 days from release to arrival at the measurement site on Antarctica.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Regiones Antárticas , Contaminación Ambiental
2.
Sci Total Environ ; 881: 163450, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37061058

RESUMEN

Antarctic ice cores have revealed the interplay between dust and climate in the Southern Hemisphere. Yet, so far, no continuous record of dust provenance has been established through the last deglaciation. Here, using a new database of 207 Rare Earth Element (REE) patterns measured in dust and sediments/soils from well-known potential source areas (PSA) of the Southern Hemisphere, we developed a statistical model combining those inputs to provide the best fit to the REE patterns measured in EPICA Dronning Maud Land (EDML) ice core (E. Antarctica). Out of 398 samples measured in the EDML core, 386 samples have been un-mixed with statistical significance. Combined with the total atmospheric deposition, we quantified the dust flux from each PSA to EDML between 7 and 27 kyr BP. Our results reveal that the dust composition was relatively uniform up until 14.5 kyr BP despite a large drop in atmospheric deposition at ∼18 kyr with a large contribution from Patagonia yielding ∼68 % of total dust deposition. The remaining dust was supplied from Australia (14-15 %), Southern Africa (∼9 %), New Zealand (∼3-4 %) and Puna-Altiplano (∼2-3 %). The most striking change occurred ∼14.5 kyr BP when Patagonia dropped below 50 % on average while low-latitude PSA increased their contributions to 21-23 % for Southern Africa, 13-21 % for Australia and âˆ¼ 4-10 % for Puna-Altiplano. We argue that this shift is linked to long-lasting changes in the hydrology of Patagonian rivers and to sudden acceleration of the submersion of Patagonian shelf at 14.5 kyr BP, highlighting a relationship between dust composition and eustatic sea level. Early Holocene dust composition is highly variable, with Patagonian contribution being still prevalent, at ∼50 % on average. Provided a good coverage of local and distal PSA, our statistical model based on REE pattern offers a straightforward and cost-effective method to trace dust source in ice cores.

3.
Elife ; 122023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36852909

RESUMEN

Hepatitis E virus (HEV) is an RNA virus responsible for over 20 million infections annually. HEV's open reading frame (ORF)1 polyprotein is essential for genome replication, though it is unknown how the different subdomains function within a structural context. Our data show that ORF1 operates as a multifunctional protein, which is not subject to proteolytic processing. Supporting this model, scanning mutagenesis performed on the putative papain-like cysteine protease (pPCP) domain revealed six cysteines essential for viral replication. Our data are consistent with their role in divalent metal ion coordination, which governs local and interdomain interactions that are critical for the overall structure of ORF1; furthermore, the 'pPCP' domain can only rescue viral genome replication in trans when expressed in the context of the full-length ORF1 protein but not as an individual subdomain. Taken together, our work provides a comprehensive model of the structure and function of HEV ORF1.


Asunto(s)
Virus de la Hepatitis E , Calpaína , Cationes Bivalentes , Cisteína , Virus de la Hepatitis E/genética , Replicación Viral , Proteínas Virales/genética
4.
Front Physiol ; 13: 1016242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388124

RESUMEN

As the most abundant cation in archaeal, bacterial, and eukaryotic cells, potassium (K+) is an essential element for life. While much is known about the machinery of transcellular and paracellular K transport-channels, pumps, co-transporters, and tight-junction proteins-many quantitative aspects of K homeostasis in biological systems remain poorly constrained. Here we present measurements of the stable isotope ratios of potassium (41K/39K) in three biological systems (algae, fish, and mammals). When considered in the context of our current understanding of plausible mechanisms of K isotope fractionation and K+ transport in these biological systems, our results provide evidence that the fractionation of K isotopes depends on transport pathway and transmembrane transport machinery. Specifically, we find that passive transport of K+ down its electrochemical potential through channels and pores in tight-junctions at favors 39K, a result which we attribute to a kinetic isotope effect associated with dehydration and/or size selectivity at the channel/pore entrance. In contrast, we find that transport of K+ against its electrochemical gradient via pumps and co-transporters is associated with less/no isotopic fractionation, a result that we attribute to small equilibrium isotope effects that are expressed in pumps/co-transporters due to their slower turnover rate and the relatively long residence time of K+ in the ion pocket. These results indicate that stable K isotopes may be able to provide quantitative constraints on transporter-specific K+ fluxes (e.g., the fraction of K efflux from a tissue by channels vs. co-transporters) and how these fluxes change in different physiological states. In addition, precise determination of K isotope effects associated with K+ transport via channels, pumps, and co-transporters may provide unique constraints on the mechanisms of K transport that could be tested with steered molecular dynamic simulations.

5.
Am J Physiol Cell Physiol ; 322(3): C410-C420, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080924

RESUMEN

Extracellular potassium (K+) homeostasis is achieved by a concerted effort of multiple organs and tissues. A limitation in studies of K+ homeostasis is inadequate techniques to quantify K+ fluxes into and out of organs and tissues in vivo. The goal of the present study was to test the feasibility of a novel approach to estimate K+ distribution and fluxes in vivo using stable K+ isotopes. 41K was infused as KCl into rats consuming control or K+-deficient chow (n = 4 each), 41K-to-39K ratios in plasma and red blood cells (RBCs) were measured by inductively coupled plasma mass spectrometry, and results were subjected to compartmental modeling. The plasma 41K/39K increased during 41K infusion and decreased upon infusion cessation, without altering plasma total K+ concentration ([K+], i.e., 41K + 39K). The time course of changes was analyzed with a two-compartmental model of K+ distribution and elimination. Model parameters, representing transport into and out of the intracellular pool and renal excretion, were identified in each rat, accurately predicting decreased renal K+ excretion in rats fed K+-deficient vs. control diet (P < 0.05). To estimate rate constants of K+ transport into and out of RBCs, 41K/39K were subjected to a simple model, indicating no effects of the K+-deficient diet. The findings support the feasibility of the novel stable isotope approach to quantify K+ fluxes in vivo and sets a foundation for experimental protocols using more complex models to identify heterogeneous intracellular K+ pools and to answer questions pertaining to K+ homeostatic mechanisms in vivo.


Asunto(s)
Potasio , Animales , Homeostasis , Isótopos de Potasio , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...