RESUMEN
Motivation: Identifying de novo tandem repeat (TR) mutations on a genome-wide scale is essential for understanding genetic variability and its implications in rare diseases. While PacBio HiFi sequencing data enhances the accessibility of the genome's TR regions for genotyping, simple de novo calling strategies often generate an excess of likely false positives, which can obscure true positive findings, particularly as the number of surveyed genomic regions increases. Results: We developed TRGT-denovo, a computational method designed to accurately identify all types of de novo TR mutations-including expansions, contractions, and compositional changes-within family trios. TRGT-denovo directly interrogates read evidence, allowing for the detection of subtle variations often overlooked in variant call format (VCF) files. TRGT-denovo improves the precision and specificity of de novo mutation (DNM) identification, reducing the number of de novo candidates by an order of magnitude compared to genotype-based approaches. In our experiments involving eight rare disease trios previously studiedTRGT-denovo correctly reclassified all false positive DNM candidates as true negatives. Using an expanded repeat catalog, it identified new candidates, of which 95% (19/20) were experimentally validated, demonstrating its effectiveness in minimizing likely false positives while maintaining high sensitivity for true discoveries. Availability and implementation: Built in Rust, TRGT-denovo is available as source code and a pre-compiled Linux binary along with a user guide at: https://github.com/PacificBiosciences/trgt-denovo.
RESUMEN
STUDY QUESTION: Are there more de novo mutations (DNMs) present in the genomes of children born through medical assisted reproduction (MAR) compared to spontaneously conceived children? SUMMARY ANSWER: In this pilot study, no statistically significant difference was observed in the number of DNMs observed in the genomes of MAR children versus spontaneously conceived children. WHAT IS KNOWN ALREADY: DNMs are known to play a major role in sporadic disorders with reduced fitness such as severe developmental disorders, including intellectual disability and epilepsy. Advanced paternal age is known to place offspring at increased disease risk, amongst others by increasing the number of DNMs in their genome. There are very few studies reporting on the effect of MAR on the number of DNMs in the offspring, especially when male infertility is known to be affecting the potential fathers. With delayed parenthood an ongoing epidemiological trend in the 21st century, there are more children born from fathers of advanced age and more children born through MAR every day. STUDY DESIGN, SIZE, DURATION: This observational pilot study was conducted from January 2015 to March 2019 in the tertiary care centre at Radboud University Medical Center. We included a total of 53 children and their respective parents, forming 49 trios (mother, father and child) and two quartets (mother, father and two siblings). One group of children was born after spontaneous conception (n = 18); a second group of children born after IVF (n = 17) and a third group of children born after ICSI combined with testicular sperm extraction (ICSI-TESE) (n = 18). In this pilot study, we also subdivided each group by paternal age, resulting in a subgroup of children born to younger fathers (<35 years of age at conception) and older fathers (>45 years of age at conception). PARTICIPANTS/MATERIALS, SETTING, METHODS: Whole-genome sequencing (WGS) was performed on all parent-offspring trios to identify DNMs. For 34 of 53 trios/quartets, WGS was performed twice to independently detect and validate the presence of DNMs. Quality of WGS-based DNM calling was independently assessed by targeted Sanger sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: No significant differences were observed in the number of DNMs per child for the different methods of conception, independent of parental age at conception (multi-factorial ANOVA, f(2) = 0.17, P-value = 0.85). As expected, a clear paternal age effect was observed after adjusting for method of conception and maternal age at conception (multiple regression model, t = 5.636, P-value = 8.97 × 10-7), with on average 71 DNMs in the genomes of children born to young fathers (<35 years of age) and an average of 94 DNMs in the genomes of children born to older fathers (>45 years of age). LIMITATIONS, REASONS FOR CAUTION: This is a pilot study and other small-scale studies have recently reported contrasting results. Larger unbiased studies are required to confirm or falsify these results. WIDER IMPLICATIONS OF THE FINDINGS: This pilot study did not show an effect for the method of conception on the number of DNMs per genome in offspring. Given the role that DNMs play in disease risk, this negative result is good news for IVF and ICSI-TESE born children, if replicated in a larger cohort. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by the Netherlands Organisation for Scientific Research (918-15-667) and by an Investigator Award in Science from the Wellcome Trust (209451). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.
Asunto(s)
Fertilización In Vitro , Inyecciones de Esperma Intracitoplasmáticas , Adulto , Niño , Femenino , Fertilización , Humanos , Masculino , Mutación , Proyectos Piloto , Inyecciones de Esperma Intracitoplasmáticas/métodosRESUMEN
De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10-5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10-4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.
Asunto(s)
Azoospermia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Mutación con Pérdida de Función , Mutación Missense , Oligospermia/genética , Proteínas de Unión al ARN/genética , Proteínas Supresoras de Tumor/genética , Adulto , Azoospermia/patología , Estudios de Casos y Controles , Proteínas de Ciclo Celular/deficiencia , Proteínas de Unión al ADN/deficiencia , Exoma , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Masculino , Oligospermia/patología , Proteínas Supresoras de Tumor/deficiencia , Secuenciación del ExomaRESUMEN
This Article was originally published under a CC BY-NC-SA 4.0 license, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been modified accordingly.
RESUMEN
Human germline de novo mutations (DNMs) are both a driver of evolution and an important cause of genetic diseases. In the past few years, whole-genome sequencing (WGS) of parent-offspring trios has facilitated the large-scale detection and study of human DNMs, which has led to exciting discoveries. The overarching theme of all of these studies is that the DNMs of an individual are a complex mixture of mutations that arise through different biological processes acting at different times during human development and life.
Asunto(s)
Envejecimiento/genética , Células Germinativas/metabolismo , Mutación de Línea Germinal , Mutación , Alelos , Replicación del ADN , Desarrollo Embrionario/genética , Genoma Humano , Genómica/métodos , Humanos , Edad Materna , MosaicismoRESUMEN
Candida vaginitis is a frequent clinical diagnosis with up to 8% of women experiencing recurrent vulvovaginal candidiasis (RVVC) globally. RVVC is characterized by at least three episodes per year. Most patients with RVVC lack known risk factors, suggesting a role for genetic risk factors in this condition. Through integration of genomic approaches and immunological studies in two independent cohorts of patients with RVVC and healthy individuals, we identified genes and cellular processes that contribute to the pathogenesis of RVVC, including cellular morphogenesis and metabolism, and cellular adhesion. We further identified SIGLEC15, a lectin expressed by various immune cells that binds sialic acid-containing structures, as a candidate gene involved in RVVC susceptibility. Candida stimulation induced SIGLEC15 expression in human peripheral blood mononuclear cells (PBMCs) and a polymorphism in the SIGLEC15 gene that was associated with RVVC in the patient cohorts led to an altered cytokine profile after PBMC stimulation. The same polymorphism led to an increase in IL1B and NLRP3 expression after Candida stimulation in HeLa cells in vitro. Last, Siglec15 expression was induced by Candida at the vaginal surface of mice, where in vivo silencing of Siglec15 led to an increase in the fungal burden. Siglec15 silencing was additionally accompanied by an increase in polymorphonuclear leukocytes during the course of infection. Identification of these pathways and cellular processes contributes to a better understanding of RVVC and may open new therapeutic avenues.
Asunto(s)
Candida albicans/patogenicidad , Genómica/métodos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/microbiología , Animales , Candidiasis Vulvovaginal/genética , Candidiasis Vulvovaginal/metabolismo , Citocinas/metabolismo , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismoRESUMEN
De novo mutations in specific mTOR pathway genes cause brain overgrowth in the context of intellectual disability (ID). By analyzing 101 mMTOR-related genes in a large ID patient cohort and two independent population cohorts, we show that these genes modulate brain growth in health and disease. We report the mTOR activator gene RHEB as an ID gene that is associated with megalencephaly when mutated. Functional testing of mutant RHEB in vertebrate animal models indicates pathway hyperactivation with a concomitant increase in cell and head size, aberrant neuronal migration, and induction of seizures, concordant with the human phenotype. This study reveals that tight control of brain volume is exerted through a large community of mTOR-related genes. Human brain volume can be altered, by either rare disruptive events causing hyperactivation of the pathway, or through the collective effects of common alleles.
Asunto(s)
Encéfalo/anatomía & histología , Discapacidad Intelectual/genética , Megalencefalia/genética , Mutación , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Serina-Treonina Quinasas TOR/metabolismo , Animales , Movimiento Celular , Tamaño de la Célula , Células Cultivadas , Humanos , Discapacidad Intelectual/patología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Tamaño de los Órganos , Convulsiones/genética , Transducción de Señal/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Pez Cebra/genéticaRESUMEN
Nonsyndromic cleft palate only (nsCPO) is a facial malformation that has a livebirth prevalence of 1 in 2,500. Research suggests that the etiology of nsCPO is multifactorial, with a clear genetic component. To date, genome-wide association studies have identified only 1 conclusive common variant for nsCPO, that is, a missense variant in the gene grainyhead-like-3 ( GRHL3). Thus, the underlying genetic causes of nsCPO remain largely unknown. The present study aimed at identifying rare variants that might contribute to nsCPO risk, via whole-exome sequencing (WES), in multiply affected Central European nsCPO pedigrees. WES was performed in 2 affected first-degree relatives from each family. Variants shared between both individuals were analyzed for their potential deleterious nature and a low frequency in the general population. Genes carrying promising variants were annotated for 1) reported associations with facial development, 2) multiple occurrence of variants, and 3) expression in mouse embryonic palatal shelves. This strategy resulted in the identification of a set of 26 candidate genes that were resequenced in 132 independent nsCPO cases and 623 independent controls of 2 different ethnicities, using molecular inversion probes. No rare loss-of-function mutation was identified in either WES or resequencing step. However, we identified 2 or more missense variants predicted to be deleterious in each of 3 genes ( ACACB, PTPRS, MIB1) in individuals from independent families. In addition, the analyses identified a novel variant in GRHL3 in 1 patient and a variant in CREBBP in 2 siblings. Both genes underlie different syndromic forms of CPO. A plausible hypothesis is that the apparently nonsyndromic clefts in these 3 patients might represent hypomorphic forms of the respective syndromes. In summary, the present study identified rare variants that might contribute to nsCPO risk and suggests candidate genes for further investigation.
Asunto(s)
Fisura del Paladar/genética , Exoma/genética , Europa (Continente) , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Masculino , Análisis de Secuencia de ADN , YemenRESUMEN
Agranulocytosis is a rare and serious adverse effect of antithyroid drugs, with unknown etiology. The present study aimed to uncover genetic susceptibility and underlying mechanisms of antithyroid drug-induced agranulocytosis (ATDAC). We studied two independent families with familial Graves' disease, of which several members developed ATDAC. In addition, six sporadic ATDAC patients with Graves' disease were investigated. Whole exome sequencing analysis of affected and unaffected family members was performed to identify genetic susceptibility variants for ATDAC, followed by functional characterization of primary granulocytes from patients and unrelated healthy controls. Whole exome sequencing, cosegregation analysis, and stringent selection criteria of candidate gene variants identified NOX3 as a genetic factor related to ATDAC. Functional studies revealed increased apoptosis of methimazole-treated granulocytes from patients carrying NOX3 variants. In conclusion, genetic variants in NOX3 may confer susceptibility to antithyroid drug-induced apoptosis of granulocytes. These findings contribute to the understanding of the mechanisms underlying ATDAC.
Asunto(s)
Agranulocitosis/inducido químicamente , Antitiroideos/efectos adversos , Exoma/genética , Enfermedad de Graves/genética , NADPH Oxidasas/genética , Apoptosis/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad/genética , Granulocitos/efectos de los fármacos , Granulocitos/patología , Humanos , Masculino , Metimazol/efectos adversos , LinajeRESUMEN
Common variants in interferon regulatory factor 6 ( IRF6) have been associated with nonsyndromic cleft lip with or without cleft palate (NSCL/P) as well as with tooth agenesis (TA). These variants contribute a small risk towards the 2 congenital conditions and explain only a small percentage of heritability. On the other hand, many IRF6 mutations are known to be a monogenic cause of disease for syndromic orofacial clefting (OFC). We hypothesize that IRF6 mutations in some rare instances could also cause nonsyndromic OFC. To find novel rare variants in IRF6 responsible for nonsyndromic OFC and TA, we performed targeted multiplex sequencing using molecular inversion probes (MIPs) in 1,072 OFC patients, 67 TA patients, and 706 controls. We identified 3 potentially pathogenic de novo mutations in OFC patients. In addition, 3 rare missense variants were identified, for which pathogenicity could not unequivocally be shown, as all variants were either inherited from an unaffected parent or the parental DNA was not available. Retrospective investigation of the patients with these variants revealed the presence of lip pits in one of the patients with a de novo mutation suggesting a Van der Woude syndrome (VWS) phenotype, whereas, in other patients, no lip pits were identified.
Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Factores Reguladores del Interferón/genética , Anomalías Múltiples/genética , Quistes/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Labio/anomalías , Mutación/genética , Mutación Missense/genética , Análisis de Secuencia de ADNRESUMEN
Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.
Asunto(s)
Discapacidad Intelectual/genética , Alelos , Consanguinidad , Exoma/genética , Familia , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Humanos , Mutación , Pakistán , Linaje , Secuenciación del Exoma/métodosRESUMEN
Intellectual disability (ID) is a major health problem in our society. Genetic causes of ID remain unknown because of its vast heterogeneity. Here we report two Finnish families and one Dutch family with affected individuals presenting with mild to moderate ID, neuropsychiatric symptoms and delayed speech development. By utilizing whole exome sequencing (WES), we identified a founder missense variant c.983T>C (p.Leu328Pro) in seven affected individuals from two Finnish consanguineous families and a deletion c.799_1034-429delinsTTATGA (p.Gln267fs) in one affected individual from a consanguineous Dutch family in the C12orf4 gene on chromosome 12. Both the variants co-segregated in the respective families as an autosomal recessive trait. Screening of the p.Leu328Pro variant showed enrichment in the North Eastern sub-isolate of Finland among anonymous local blood donors with a carrier frequency of 1:53, similar to other disease mutations with a founder effect in that region. To date, only one Arab family with a three affected individuals with a frameshift insertion variant in C12orf4 has been reported. In summary, we expand and establish the clinical and mutational spectrum of C12orf4 variants. Our findings implicate C12orf4 as a causative gene for autosomal recessive ID.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Discapacidad Intelectual/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Anciano , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Consanguinidad , Exoma/genética , Salud de la Familia , Femenino , Finlandia , Efecto Fundador , Genes Recesivos , Genotipo , Geografía , Humanos , Masculino , Países Bajos , Linaje , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de AminoácidoRESUMEN
De novo missense mutations and in-frame coding deletions in the X-linked gene SMC1A (structural maintenance of chromosomes 1A), encoding part of the cohesin complex, are known to cause Cornelia de Lange syndrome in both males and females. For a long time, loss-of-function (LoF) mutations in SMC1A were considered incompatible with life, as such mutations had not been reported in neither male nor female patients. However, recently, the authors and others reported LoF mutations in females with intellectual disability (ID) and epilepsy. Here we present the detailed phenotype of two females with de novo LoF mutations in SMC1A, including a de novo mutation of single base deletion [c.2364del, p.(Asn788Lysfs*10)], predicted to result in a frameshift, and a de novo deletion of exon 16, resulting in an out-of-frame mRNA splice product [p.(Leu808Argfs*6)]. By combining our patients with the other recently reported females carrying SMC1A LoF mutations, we ascertained a phenotypic spectrum of (severe) ID, therapy-resistant epilepsy, absence/delay of speech, hypotonia and small hands and feet. Our data show the existence of a novel phenotypic entity - distinct from CdLS - and caused by de novo SMC1A LoF mutations.
Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Adolescente , Síndrome de Cornelia de Lange/fisiopatología , Resistencia a Medicamentos/genética , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Exones/genética , Femenino , Genes Ligados a X , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Persona de Mediana Edad , Fenotipo , ARN Mensajero/genética , Eliminación de SecuenciaRESUMEN
Autologous skin grafts are the gold standard for the treatment of burn wounds. In a number of cases, treatment with autologous tissue is not possible and skin substitutes are used. The outcome, however, is not optimal and improvements are needed. Inspired by scarless healing in early embryonic development, we here set out a strategy for the design and construction of embryonic-like scaffolds for skin tissue engineering. This strategy may serve as a general approach in the construction of embryonic-like scaffolds for other tissues/organ. As a first step, key effector molecules upregulated during embryonic and neonatal skin formation were identified using a comparative gene expressing analysis. A set of 20 effector molecules was identified, from which insulin-like growth factor 2 (IGF2) and sonic hedgehog (SHH) were selected for incorporation into a type I collagen-heparin scaffold. Porous scaffolds were constructed using purified collagen fibrils and 6% covalently bound heparin (to bind and protect the growth factors), and IGF2 and SHH were incorporated either individually (~0.7 and 0.4 µg/mg scaffolds) or in combination (combined ~1.5 µg/mg scaffolds). In addition, scaffolds containing hyaluronan (up to 20 µg/mg scaffold) were prepared, based on the up- or downregulation of genes involved in hyaluronan synthesis/degradation and its suggested role in scarless healing. In conclusion, based on a comprehensive gene expression analysis, a set of effector molecules and matrix molecules was identified and incorporated into porous scaffolds. The scaffolds thus prepared may create an 'embryonic-like' environment for cells to recapitulate embryonic events and for new tissues/organs.
Asunto(s)
Embrión de Mamíferos/citología , Piel/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Western Blotting , Bovinos , Colágeno/farmacología , Colágeno Tipo I/farmacología , Embrión de Mamíferos/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Heparina/farmacología , Ácido Hialurónico/farmacología , Inmunohistoquímica , Factor II del Crecimiento Similar a la Insulina/farmacología , Ratones Endogámicos C57BLRESUMEN
OBJECTIVE: The aim of this study was to determine the genetic and immunological defects underlying familial manifestations of an autoimmune disorder. METHODS: Whole-exome sequencing was performed on the index patient with various manifestations of autoimmunity, including hypothyroidism, vitiligo and alopecia. Peripheral blood mononuclear cells and DNA of family members were used for functional and genetic testing of the candidate variants obtained by Sanger sequencing. RESULTS: Exome sequencing identified 233 rare, coding and nonsynonymous variants in the index patient; five were highly conserved and affect genes that have a possible role in autoimmunity. Only a heterozygous missense mutation in the suppressor of cytokine signalling 4 gene (SOCS4) cosegregated with the autoimmune disorder in the family. SOCS4 is a known inhibitor of epidermal growth factor (EGF) receptor signalling, and functional studies demonstrated specific upregulation of EGF-dependent immune stimulation in affected family members. CONCLUSION: We present a family with an autoimmune disorder, probably resulting from dysregulated immune responses due to mutations in SOCS4.
Asunto(s)
Autoinmunidad/genética , ADN/genética , Exoma , Familia , Enfermedad de Hashimoto/genética , Mutación Missense , Proteínas Supresoras de la Señalización de Citocinas/genética , Niño , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Enfermedad de Hashimoto/inmunología , Enfermedad de Hashimoto/metabolismo , Humanos , Masculino , Linaje , Análisis de Secuencia de ADN , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Tiroiditis AutoinmuneRESUMEN
Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation.
Asunto(s)
Proceso Alveolar/citología , Proceso Alveolar/metabolismo , Proteínas del Esmalte Dental/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Adulto , Proceso Alveolar/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Ensayo de Inmunoadsorción Enzimática , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/genética , Femenino , Ontología de Genes , Humanos , Interleucina-7/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Coloración y Etiquetado , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Adulto JovenRESUMEN
Mutations in the ectodysplasin-A (EDA) gene have been generally associated with X-linked hypohidrotic ectodermal dysplasia (XLHED). Recently, missense mutations in EDA have been reported to cause familial non-syndromic tooth agenesis. In this study, we report a novel EDA mutation in an Estonian family segregating non-syndromic tooth agenesis with variable expressivity. Affected individuals had no associated defects in other ectodermal organs. Using whole-exome sequencing, we identified a heterozygous nonsense mutation c.874G>T (p.Glu292X) in the TNF homology domain of EDA in all affected female patients. This protein-altering variant arose de novo, and the potentially causative allele was transmitted to affected offspring from the affected mother. We suggest that the dental phenotype variability described in heterozygous female carriers of EDA mutation may occur because of the differential pattern of X-chromosome inactivation, which retains reduced levels of EDA-receptor signaling in tissues involved in tooth morphogenesis. This results in selective tooth agenesis rather than XLHED phenotype. The present study broadens the mutation spectrum for this locus and demonstrates that EDA mutations may result in non-syndromic tooth agenesis in heterozygous females.
Asunto(s)
Anodoncia/genética , Codón sin Sentido/genética , Ectodisplasinas/genética , Alelos , Mapeo Cromosómico , Secuencia Conservada/genética , Exoma/genética , Femenino , Expresión Génica/genética , Variación Genética/genética , Glutamina/genética , Guanina , Heterocigoto , Humanos , Mutación INDEL/genética , Masculino , Odontogénesis/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Receptores de la Ectodisplasina/genética , Análisis de Secuencia , Análisis de Secuencia de Proteína , Transducción de Señal/genética , Homología Estructural de Proteína , Timina , Factores de Necrosis Tumoral/genética , Inactivación del Cromosoma X/genéticaRESUMEN
Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients.