Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
mBio ; 10(3)2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213552

RESUMEN

Although distinct lipid phosphatases are thought to be required for processing lipid A (component of the outer leaflet of the outer membrane), glycerophospholipid (component of the inner membrane and the inner leaflet of the outer membrane), and undecaprenyl pyrophosphate (C55-PP; precursors of peptidoglycan and O antigens of lipopolysaccharide) in Gram-negative bacteria, we report that the lipid A 1-phosphatases, LpxEs, functionally connect multiple layers of cell envelope biogenesis in Gram-negative bacteria. We found that Aquifex aeolicus LpxE structurally resembles YodM in Bacillus subtilis, a phosphatase for phosphatidylglycerol phosphate (PGP) with a weak in vitro activity on C55-PP, and rescues Escherichia coli deficient in PGP and C55-PP phosphatase activities; deletion of lpxE in Francisella novicida reduces the MIC value of bacitracin, indicating a significant contribution of LpxE to the native bacterial C55-PP phosphatase activity. Suppression of plasmid-borne lpxE in F. novicida deficient in chromosomally encoded C55-PP phosphatase activities results in cell enlargement, loss of O-antigen repeats of lipopolysaccharide, and ultimately cell death. These discoveries implicate LpxE as the first example of a multifunctional regulatory enzyme that orchestrates lipid A modification, O-antigen production, and peptidoglycan biogenesis to remodel multiple layers of the Gram-negative bacterial envelope.IMPORTANCE Dephosphorylation of the lipid A 1-phosphate by LpxE in Gram-negative bacteria plays important roles in antibiotic resistance, bacterial virulence, and modulation of the host immune system. Our results demonstrate that in addition to removing the 1-phosphate from lipid A, LpxEs also dephosphorylate undecaprenyl pyrophosphate, an important metabolite for the synthesis of the essential envelope components, peptidoglycan and O-antigen. Therefore, LpxEs participate in multiple layers of biogenesis of the Gram-negative bacterial envelope and increase antibiotic resistance. This discovery marks an important step toward understanding the regulation and biogenesis of the Gram-negative bacterial envelope.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/enzimología , Lípido A/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Bacterias Gramnegativas/genética , Lípido A/genética , Proteínas de la Membrana/genética , Antígenos O/genética , Antígenos O/metabolismo , Peptidoglicano/genética , Peptidoglicano/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Fosfatos de Poliisoprenilo/metabolismo , Homología de Secuencia de Aminoácido
2.
ACS Infect Dis ; 5(4): 641-651, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30721024

RESUMEN

The UDP-2,3-diacylglucosamine pyrophosphatase LpxH in the Raetz pathway of lipid A biosynthesis is an essential enzyme in the vast majority of Gram-negative pathogens and an excellent novel antibiotic target. The 32P-radioautographic thin-layer chromatography assay has been widely used for analysis of LpxH activity, but it is inconvenient for evaluation of a large number of LpxH inhibitors over an extended time period. Here, we report a coupled, nonradioactive LpxH assay that utilizes the recently discovered Aquifex aeolicus lipid A 1-phosphatase LpxE for quantitative removal of the 1-phosphate from lipid X, the product of the LpxH catalysis; the released inorganic phosphate is subsequently quantified by the colorimetric malachite green assay, allowing the monitoring of the LpxH catalysis. Using such a coupled enzymatic assay, we report the biochemical characterization of a series of sulfonyl piperazine LpxH inhibitors. Our analysis establishes a preliminary structure-activity relationship for this class of compounds and reveals a pharmacophore of two aromatic rings, two hydrophobic groups, and one hydrogen-bond acceptor. We expect that our findings will facilitate the development of more effective LpxH inhibitors as potential antibacterial agents.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Fosfatos/química , Piperazina/química , Pirofosfatasas/química , Colorantes de Rosanilina/química , Antibacterianos/química , Antibacterianos/farmacología , Aquifex , Bacterias/química , Proteínas Bacterianas/antagonistas & inhibidores , Biocatálisis , Pruebas de Enzimas , Inhibidores Enzimáticos/farmacología , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Glucolípidos/química , Piperazina/farmacología , Pirofosfatasas/antagonistas & inhibidores , Relación Estructura-Actividad
3.
Science ; 341(6149): 1012-1016, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23990562

RESUMEN

MraY (phospho-MurNAc-pentapeptide translocase) is an integral membrane enzyme that catalyzes an essential step of bacterial cell wall biosynthesis: the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate. MraY has long been considered a promising target for the development of antibiotics, but the lack of a structure has hindered mechanistic understanding of this critical enzyme and the enzyme superfamily in general. The superfamily includes enzymes involved in bacterial lipopolysaccharide/teichoic acid formation and eukaryotic N-linked glycosylation, modifications that are central in many biological processes. We present the crystal structure of MraY from Aquifex aeolicus (MraYAA) at 3.3 Å resolution, which allows us to visualize the overall architecture, locate Mg(2+) within the active site, and provide a structural basis of catalysis for this class of enzyme.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Pared Celular/química , Proteínas de la Membrana/química , Transferasas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Pared Celular/enzimología , Cristalografía por Rayos X , Citoplasma/enzimología , Proteínas de la Membrana/genética , Periplasma/enzimología , Conformación Proteica , Estructura Secundaria de Proteína , Transferasas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)
4.
Proteins ; 77 Suppl 9: 29-49, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19731372

RESUMEN

For template-based modeling in the CASP8 Critical Assessment of Techniques for Protein Structure Prediction, this work develops and applies six new full-model metrics. They are designed to complement and add value to the traditional template-based assessment by the global distance test (GDT) and related scores (based on multiple superpositions of Calpha atoms between target structure and predictions labeled "Model 1"). The new metrics evaluate each predictor group on each target, using all atoms of their best model with above-average GDT. Two metrics evaluate how "protein-like" the predicted model is: the MolProbity score used for validating experimental structures, and a mainchain reality score using all-atom steric clashes, bond length and angle outliers, and backbone dihedrals. Four other new metrics evaluate match of model to target for mainchain and sidechain hydrogen bonds, sidechain end positioning, and sidechain rotamers. Group-average Z-score across the six full-model measures is averaged with group-average GDT Z-score to produce the overall ranking for full-model, high-accuracy performance. Separate assessments are reported for specific aspects of predictor-group performance, such as robustness of approximately correct template or fold identification, and self-scoring ability at identifying the best of their models. Fold identification is distinct from but correlated with group-average GDT Z-score if target difficulty is taken into account, whereas self-scoring is done best by servers and is uncorrelated with GDT performance. Outstanding individual models on specific targets are identified and discussed. Predictor groups excelled at different aspects, highlighting the diversity of current methodologies. However, good full-model scores correlate robustly with high Calpha accuracy.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Análisis de Secuencia de Proteína/métodos , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA