Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Bodyw Mov Ther ; 37: 83-89, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432846

RESUMEN

BACKGROUND: Virtual reality head-mounted display (VR-HMD) is increasingly used for balance evaluation and rehabilitation. However, more studies must be conducted on virtual environments (VE) effects. This study aimed to assess the impact of an outdoor VE projected in a high-quality VR-HMD and of the VR-HMD mass on postural stability, postural control and leaning. METHODS: This study involved ten healthy young men who performed five 30-s stabilometric trials. Four experimental conditions were randomly performed: eyes open (EO) or eyes closed (EC), with (VR) or without (No VR) VR-HMD. Postural stability (antero-posterior (AP) and medio-lateral (ML) ranges of the center of pressure (CoP), 90% confidence ellipse area), postural control (CoP velocity (global, AP and ML)) and standard deviation of the CoP mean position), and postural leaning (AP/ML CoP mean position) were assessed. The comparisons between EO VR and EO No VR were used to analyze the VE effects and comparisons between EC VR and EC No VR for the VR-HMD mass effects. RESULTS: Spatiotemporal parameters that characterised postural stability and postural control, except ML velocity (p > 0.05), were significantly influenced by the simulated VE with higher values in EO VR than EO No VR (p < 0.05), but not by the VR-HMD mass. The mean position of the CoP showed no significant differences between conditions. SIGNIFICANCE: Postural stability and postural control modification due to the VE used in this study revealed that this VE could be interesting for VR-HMD rehabilitation and assessment. VR-HMD is not a factor to be considered for stabilometric analysis.


Asunto(s)
Telerrehabilitación , Realidad Virtual , Masculino , Humanos , Adulto Joven , Estado de Salud , Equilibrio Postural
2.
J Biomech ; 144: 111309, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179572

RESUMEN

The purpose of this investigation was to determine the effect of unexpected gait termination in able-bodied participants during gait initiation on spatiotemporal and stance limb biomechanical parameters. Twenty-one healthy adults took part in this study and were divided into two groups based on the natural anterior or posterior incline of their trunk. Each participant performed 15 random trials of gait initiation: 10 trials with a Go signal and 5 with Go-&-Stop signals. Spatiotemporal parameters were assessed between the Go signal and the first heel contact. Ankle, knee, and hip joint moments were calculated in the sagittal plane. Free moment and impulse were also calculated for the stance limb. Spatiotemporal parameters were not influenced by the mean trunk inclination (p > 0.05), but participants with a forwardly-inclined trunk presented higher hip extension moments (p < 0.05). Unexpected stopping required smaller ankle and knee moments compared to the Go condition (p < 0.05). The hip extension moments appeared to be independent of gait initiation conditions (p > 0.05). The capacity of able-bodied people to interrupt their gait initiation relied on a two-stage disto-proximal braking modality involving explosive motor patterns at the ankle and hip joints. Such a pattern could be altered in vulnerable people, and further studies are needed to investigate this. This study determined a clinical method applicable as a functional protocol to assess and improve the postural control of people suffering from a lack of motor modulation during crucial transient tasks. Such tasks are essential in activities of daily living.


Asunto(s)
Actividades Cotidianas , Marcha , Adulto , Humanos , Fenómenos Biomecánicos , Equilibrio Postural , Articulación de la Rodilla , Extremidad Inferior , Caminata
3.
Gait Posture ; 92: 249-257, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34890914

RESUMEN

BACKGROUND: The equivalency of treadmill and overground walking has been investigated in a large number of studies. However, no systematic review has been performed on this topic. RESEARCH QUESTION: The aim of this study was to compare the biomechanical, electromyographical and energy consumption outcomes of motorized treadmill and overground walking. METHODS: Five databases, ScienceDirect, SpringerLink, Web of Science, PubMed, and Scopus, were searched until January 13, 2021. Studies written in English comparing lower limb biomechanics, electromyography and energy consumption during treadmill and overground walking in healthy young adults (20-40 years) were included. RESULTS: Twenty-two studies (n = 409 participants) were included and evaluated via the Cochrane Collaboration's tool. These 22 studies showed that some kinematic (reduced pelvic ROM, maximum hip flexion angle for females, maximum knee flexion angle for males and cautious gait pattern), kinetic (sagittal plane joint moments: dorsiflexor moments, knee extensor moments and hip extensor moments and sagittal plane joint powers at the knee and hip joints, peak backwards, lateral and medial COP velocities and propulsive forces during late stance) and electromyographic (lower limbs muscles activities) outcome measures were significantly different for motorized treadmill and overground walking. SIGNIFICANCE: Spatiotemporal, kinematic, kinetic, electromyographic and energy consumption outcome measures were largely comparable for motorized treadmill and overground walking. However, the differences in kinematic, kinetic and electromyographic parameters should be taken into consideration by clinicians, trainers, and researchers when working on new protocols related to patient rehabilitation, fitness rooms or research as to be as close as possible to the outcome measures of overground walking. The protocol registration number is CRD42021236335 (PROSPERO International Prospective Register of Systematic Reviews).


Asunto(s)
Prueba de Esfuerzo , Caminata , Fenómenos Biomecánicos , Prueba de Esfuerzo/métodos , Femenino , Marcha/fisiología , Humanos , Masculino , Caminata/fisiología , Adulto Joven
4.
J Bodyw Mov Ther ; 27: 634-639, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34391299

RESUMEN

INTRODUCTION: Lower limb amputation impairs postural performance that could be characterized by biomechanical parameters. This study is to investigate postural performance of persons with transfemoral and transtibial amputation compared to controls without amputation. METHODS: Eight transtibial, nine transfemoral and twelve able-bodied males participated in this study. Lower limb joints, pelvis and trunk angles were obtained from an optoelectronic motion analysis system to evaluate body posture parameters. The mean, range and speed of the center of pressure (CoP) in both antero-posterior and medio-lateral axes as well as the ellipse area covered by 90% of CoP and free moment were calculated using a single force-plate. RESULTS AND DISCUSSION: Differences in body posture were only noted between the non-amputee and the transtibial groups. Transtibial amputees leaned more forwardly their trunk by 3.5° compared to able-bodied (p = 0.028). The mean CoP position in transfemoral amputees was closer to the non-amputated side than transtibial amputees (p = 0.034) and as compared to the dominant side in non-amputees (p = 0.042). Factor analysis revealed three postural performance modalities. Non-amputees postural performance was characterized solely by body posture parameters. Transfemoral amputees exclusively favored a modality associated with standing balance parameters, whereas transtibial amputees exhibited a mixed modality comprising a combination of postural and balance parameters. CONCLUSION: These findings support that the level of amputation is characterized by postural performance modalities different from non-amputees. Clinicians could apply this knowledge as part of their routine rehabilitation program to enhance postural and standing balance assessments in unilateral transfemoral and transtibial amputees.


Asunto(s)
Amputados , Miembros Artificiales , Amputación Quirúrgica , Fenómenos Biomecánicos , Humanos , Masculino , Equilibrio Postural , Postura
5.
Disabil Rehabil ; 43(17): 2454-2463, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31854195

RESUMEN

PURPOSE: Even in the early stage of the disease, for patients suffering from multiple sclerosis (MS), the most common and reported biomechanical alterations in the lower limb are located at the ankle joint. However, the effects of these impairments on gait deterioration should be discussed. MATERIALS AND METHODS: This review was written according to the PRISMA guidelines. The search focussed on biomechanical changes (kinetic, kinematic, and electromyographic data) at the ankle during gait in MS patients. The search was performed in the databases: Pubmed, Web of Science, and Cochrane Library. RESULTS: Eleven studies were included. The reduction in the ankle range of motion (RoM) induced by increased cocontractions of the tibialis anterior and triceps surae muscles could be a compensatory strategy to improve body-weight support and balance during the stance phase. CONCLUSIONS: Future rehabilitation programmes should consider the control of weight support at the ankle during gait training.Implications for rehabilitationThe ankle supports and stabilises the body during the stance phase of gait.The reduced ankle range of motion in multiple sclerosis (MS), even at an early stage of the disease, is due to cocontractions of tibialis anterior and triceps surae and could be a compensatory strategy to be more stable.Rehabilitation programmes for MS patients should focus on the control of body segments motion during the weight transfer above the ankle.


Asunto(s)
Esclerosis Múltiple , Caminata , Tobillo , Articulación del Tobillo , Fenómenos Biomecánicos , Marcha , Humanos , Esclerosis Múltiple/complicaciones , Rango del Movimiento Articular
6.
Exp Aging Res ; 45(4): 357-371, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31181989

RESUMEN

Background/Study Context: Advancing age is associated with a decrease in step length. In line with previous studies showing that older adults often overestimate their motor abilities, we investigate whether older adults overestimate the length of their first step during gait initiation. The underlying effect could be a failure to update the internal model of motor action as a function of age-related motor decline. Methods: Without taking a step, community-dwelling older women (n = 22, age range: 68-87 years) and younger women (n = 19, age range: 19-33 years) estimated the length of their first step for both preferred step length and largest step length, which were performed without endangerment. Thereafter, the participants performed real gait initiation for both types of steps. The estimated step lengths were compared to the actual step lengths. Results: Older adults judged their first step as larger than it was (mean error: 30% for the preferred step and 9% for the largest step). A fine-grained analysis showed that this effect mainly concerned those for whom an increased risk of falling was suspected. These older adults were also among those who performed the shortest steps, and they presented with a slight decrease in cognitive functioning. Younger participants underestimated their preferred step length. Overall, the estimates were more accurate for the largest steps than for the preferred-length steps. Conclusion: Step length estimation revealed powerful evidence for overestimation in older adults. Those who overestimated step length presented with more signs of motor decline. While this result sustains the idea of an insufficient actualization of the motor-action model, the explanation also refers to more global appraisal processes. Further research should explore the relevance of this task as a clinical laboratory tool for assessing gait capacity and the risk of falling.


Asunto(s)
Envejecimiento/fisiología , Marcha , Accidentes por Caídas , Adulto , Anciano , Anciano de 80 o más Años , Cognición , Femenino , Humanos , Vida Independiente , Adulto Joven
7.
Eur J Sport Sci ; 17(10): 1261-1269, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28853317

RESUMEN

Compared to traditional tennis shoes, using 0-drop shoes was shown to induce an immediate switch from rear- to forefoot strike pattern to perform an open stance tennis forehand for 30% of children tennis players. The purpose of the study was to examine the long-term effects of a gradual reduction in the shoe drop on the biomechanics of children tennis players performing open stance forehands. Thirty children tennis players participated in 2 laboratory biomechanical test sessions (intermediate: +4 months and final: +8 months) after an inclusion visit where they were randomly assigned to control (CON) or experimental (EXP) group. CON received 12-mm-drop shoes twice, whereas EXP received 8 mm then 4-mm-drop shoes. Strike index indicated that all CON were rearfoot strikers in intermediate and final test sessions. All EXP were rearfoot strikers in intermediate test session, but half the group switched towards a forefoot strike pattern in final test session. This switch resulted in a decreased loading rate of the ground reaction force (-73%, p = .005) but increased peak ankle plantarflexors moment (+47%, p = .050) and peak ankle power absorption (+107%, p = .005) for these participants compared with CON. Biomechanical changes associated with the long-term use of partial minimalist shoes suggest a reduction in heel compressive forces but an increase in Achilles tendon tensile forces.


Asunto(s)
Pie/fisiología , Extremidad Inferior/fisiología , Zapatos , Equipo Deportivo , Tenis/fisiología , Fenómenos Biomecánicos , Niño , Humanos , Estudios Longitudinales , Masculino
8.
Behav Brain Res ; 317: 434-443, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27717815

RESUMEN

Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity.


Asunto(s)
Suspensión Trasera/efectos adversos , Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiología , Trastornos Motores/tratamiento farmacológico , Análisis de Varianza , Animales , Tobillo/inervación , Fenómenos Biomecánicos , Sistemas de Liberación de Medicamentos , Miembro Anterior/efectos de los fármacos , Miembro Anterior/fisiología , Miembro Posterior/efectos de los fármacos , Miembro Posterior/fisiología , Cadera/inervación , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Proteínas de la Membrana , Trastornos Motores/etiología , Proteínas de Unión a Fosfato , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Wistar
9.
Eur J Sport Sci ; 16(8): 1121-9, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27210455

RESUMEN

This study investigated the immediate effects of reducing the shoe drop (i.e. the difference between the heel and the forefoot height) on the kinematics and kinetics of the lower extremities of children tennis players performing a tennis-specific movement. Thirteen children tennis players performed a series of simulated open stance forehands wearing 3 pairs of shoes differing only in the drop: 0 (D0), 6 (D6) and the control condition of 12 mm (D12). Two embedded forceplates and a motion capture system were used to analyse the ground reaction forces and ankle and knee joint angles and moments of the leading lower limb. In D6 compared with D12, the peak impact force was reduced by 24% (p = .004) and the ankle was less dorsiflexed at foot strike (p = .037). In D0 compared with D12, the peak impact force was reduced by 17% (p = .049), the ankle was less dorsiflexed at foot strike (p = .045) and the knee was more flexed at foot strike (p = .007). In addition, 4 out of 13 participants (31%) presented a forefoot strike pattern for some of the trials in D0. No difference was observed across shoe conditions for the peak knee extensor moment (p = .658) or the peak ankle plantarflexor moment (p = .071). The results provide preliminary data supporting the hypothesis that for children tennis players, using a 6-mm lower shoe drop might reduce heel impact forces and thus limit potentially impact-related injuries.


Asunto(s)
Pie/fisiología , Extremidad Inferior/fisiología , Rango del Movimiento Articular/fisiología , Tenis/fisiología , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos , Niño , Marcadores Fiduciales , Humanos , Articulación de la Rodilla/fisiología , Carrera , Zapatos
10.
Spine J ; 14(7): 1291-9, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24333457

RESUMEN

BACKGROUND CONTEXT: The effect of chronic low back pain (CLBP) on the kinematic parameters of trunk motion has received much more interest in this last decade. However, there are no descriptions of the motor strategies that occur when patients perform trunk movements in the three anatomical planes at different pace conditions. PURPOSE: To investigate motor strategies used by CLBP patients and asymptomatic people while performing different go and back trunk movements in an upright standing position. STUDY DESIGN: A comparative study. PATIENT SAMPLE: The control group (CG, n=33) included 14 men and 19 women with no history of low back pain, and the chronic low back pain group (CLBPG, n=49) included 21 men and 28 women. OUTCOME MEASURES: Kinematic data were analyzed during six trunk movements: flexion, extension, left and right lateral bendings, and rotations under two pace conditions (preferred and fast paces). METHODS: A three-dimensional optoelectronic motion analysis system was used to assess static (trunk inclinations and base of support) and dynamic (range of motion [ROM] and mean angular velocity of the trunk) parameters during the go and back phases of trunk movements. RESULTS: In the initial position, CLBPG showed a more forward-tilted trunk inclination (2.1°±1.1°, p=.013) compared with CG. The base of support was significantly higher in CG (+22.7 cm2, p=.009) during the fast pace when compared with the preferred pace. Regardless of the pace condition, ROM and mean angular velocity of the trunk were significantly lower in CLBPG for all examined movements and the pace condition did not significantly alter ROM. At the preferred pace, both groups displayed the same motor strategy: they all went faster during the second phase of movement than during the first phase. However, at the fast pace, while CG was going faster during the first phase than during the second, CLBPG maintained the same motor strategy as at the preferred pace. CONCLUSIONS: Contrary to CG who changed its motor behavior from a preferred pace to a fast pace, CLBPG exhibited freezing-like behaviors. This original result highlights the importance of studying the velocity. The use of this parameter may improve the diagnosis of CLBP patients and could be a key indicator for treatment progress and long-term monitoring.


Asunto(s)
Dolor de la Región Lumbar/fisiopatología , Actividad Motora/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Movimiento , Postura , Rango del Movimiento Articular
11.
PLoS One ; 8(1): e55256, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383128

RESUMEN

The imposing mass of the trunk in relation to the whole body has an important impact on human motion. The objective of this study is to determine the influence of trunk's natural inclination--forward (FW) or backward (BW) with respect to the vertical--on body kinematics and stance limb kinetics during gait initiation.Twenty-five healthy males were divided based on their natural trunk inclination (FW or BW) during gait initiation. Instantaneous speed was calculated at the center of mass at the first heel strike. The antero-posterior impulse was calculated by integrating the antero-posterior ground reaction force in time. Ankle, knee, hip and thoraco-lumbar (L5) moments were calculated using inverse dynamics and only peaks of the joint moments were analyzed. Among all the investigated parameters, only joint moments present significant differences between the two groups. The knee extensor moment is 1.4 times higher (P<0.001) for the BW group, before the heel contact. At the hip, although the BW group displays a flexor moment 2.4 times higher (P<0.001) before the swing limb's heel-off, the FW group displays an extensor moment 3.1 times higher (P<0.01) during the swing phase. The three L5 extensor peaks after the toe-off are respectively 1.7 (P<0.001), 1.4 (P<0.001) and 1.7 (P<0.01) times higher for the FW group. The main results support the idea that the patterns described during steady-state gait are already observable during gait initiation. This study also provides reference data to further investigate stance limb kinetics in specific or pathologic populations during gait initiation. It will be of particular interest for elderly people, knowing that this population displays atypical trunk postures and present a high risk of falling during this forward stepping.


Asunto(s)
Extremidades/fisiología , Marcha/fisiología , Locomoción/fisiología , Postura/fisiología , Torso/fisiología , Adulto , Análisis de Varianza , Fenómenos Biomecánicos , Humanos , Masculino , Factores de Tiempo
12.
Gait Posture ; 33(4): 550-5, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21324699

RESUMEN

Gait initiation (GI) has been the focus of many investigations in order to determine the kinematic and kinetic parameters associated with this process. In these studies, the parameters are observed during GI with the preferential lower limb. However, none of these studies have looked at the impact on GI parameters when the start is achieved with the non-preferential limb. This investigation focused on the effects of lower limb preference on the kinematic and kinetic parameters of GI. Upon display of a visual cue, subjects stepped with preferential limb or non-preferential limb at natural speed. The duration of GI phases, the medio-lateral component of the center of mass (CM) displacement, the medio-lateral distance between the center of pressure and the CM, the step width as well as the medio-lateral impulse, were observed. When subjects started with the non-preferential limb, the bodyweight transfer was facilitated by a greater impulse during the anticipatory postural adjustment (APA) phase. Conversely, a more lateral CM displacement during the execution phase and a more lateral step in preferential start were observed. Asymmetry in frontal plane body motion was observed during weight transfer following APA, as well as during assistive control of ballistic body motion during the execution phase of the first step. In both conditions, the non-preferential limb provided the greater lateral impulse on the ground. This may have clinical relevance especially in individuals with unilateral limb dyscontrol and postural asymmetry that may require rehabilitation.


Asunto(s)
Marcha/fisiología , Extremidad Inferior/fisiología , Adulto , Fenómenos Biomecánicos , Electromiografía , Humanos , Masculino , Caminata/fisiología
13.
Percept Mot Skills ; 107(3): 849-61, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19235414

RESUMEN

The present study was designed to test functional differences between both lower limbs in able-bodied gait according to fore-aft force impulse analyses and to assess the existence of a preferential lower limb for forward propulsion and braking. The leg that did more of the braking (Most Braking Limb) and the leg that did more of the propulsion (Most Propulsive Limb) were defined by the higher negative and positive impulses calculated from the anterior-posterior component of the ground reaction force. 24 adult men free of pain and injury to their lower extremities (M age =25.9 yr., SD=4.5) performed 10 walking trials on a 10-m walkway with two force plates flush mounted in the middle. The anterior-posterior component of the velocity of the center of mass (V(AP)) was calculated with the VICON system. Results highlighted two forms of asymmetry behaviour: although significant bilateral differences between the legs concerning the propulsive and braking impulses were found in all participants, 70.8% of the participants displayed a different Most Braking Limb than Most Propulsive Limb, whereas 25% used the same leg to produce both more propulsion and braking. High consistency was found in the behavioural strategy. Bilateral differences in V(AP) according to the gait cycle (Most Propulsive Limb vs Most Braking Limb) suggested a functional division of tasks between the two lower limbs for 70.8% of the participants. The study provides support for the relevancy of a functional categorization to highlight different asymmetry strategies in able-bodied gait.


Asunto(s)
Marcha , Aptitud Física , Adulto , Humanos , Masculino , Caminata
14.
Am J Phys Med Rehabil ; 82(2): 101-9, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12544755

RESUMEN

OBJECTIVE: The objectives of this study were to demonstrate that data from a video-based system could be used to estimate the net effect of the external forces during gait, to determine the contribution of the trunk and upper and lower limbs using their accelerated body masses, and to test the hypothesis that the thigh mainly assumed lower limb propulsion during able-bodied locomotion. METHODS: The gait of 16 able-bodied subjects was assessed using an eight-camera video-based system and two force plates. The right limb was the leading limb, and there were two trials per subject. Although data from all the body segments were used to answer the first two objectives, only right limb information was used to address the third objective. RESULTS: Pearson's coefficients of correlation and root mean square errors were calculated to determine the difference between the curves obtained from the sum of the external forces and that of the accelerated masses. These were >0.85, and the mean root mean square error was <4 N. Analyses of variance were performed on the peak forces developed by the trunk and the upper and lower limbs along each axis. Tukey's posthoc tests (P < 0.05) revealed that the trunk was the principal contributor of external forces in the frontal and transverse planes, whereas the lower limbs were found to be more important in the plane of progression. Analyses of variance and Tukey's posthoc tests (P < 0.05) were performed on the peak forces developed by each segment of the right limb. In decreasing order, the thigh, shank, and foot displayed the highest mass-acceleration products in the right limb during gait. CONCLUSIONS: A video-based system was able to determine the net effect of the external forces with the summation of the mass-acceleration products during able-bodied gait. The trunk and lower limbs were the dominant body segments responsible for the production of external forces during able-bodied gait, whereas the thighs contributed more to the ground reaction force than the foot and shank for forward progression in able-bodied gait.


Asunto(s)
Aceleración , Marcha/fisiología , Músculo Esquelético/fisiología , Grabación en Video , Caminata/fisiología , Adulto , Fenómenos Biomecánicos , Extremidades/fisiología , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...