Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38628155

RESUMEN

Optimal stomatal regulation is important for plant adaptation to changing environmental conditions and for maintaining crop yield. The guard-cell signal GABA is produced from glutamate by Glutamate Decarboxylase (GAD) during a reaction that generates carbon dioxide (CO2) as a by-product. Here, we investigated a putative connection between GABA signalling and the more clearly defined CO2 signalling pathway in guard cells. The GABA-deficient mutant lines gad2-1, gad2-2 and gad1/2/4/5 were examined for stomatal sensitivity to various CO2 concentrations. Our findings show a phenotypical discrepancy between the allelic mutant lines gad2-1 and gad2-2 - a weakened CO2 response in gad2-1 (GABI_474_E05) in contrast to a wild-type response in gad2-2 (SALK_028819) and gad1/2/4/5. Through transcriptomic and genomic investigation, we traced the response of gad2-1 to a deletion of full-length Mitogen-activated protein kinase 12 (MPK12) in the GABI-KAT line, thereafter as renamed gad2-1*. Guard cell-specific complementation of MPK12 restored the gad2-1* CO2 phenotype, which confirms the proposed importance of MPK12 to CO2 sensitivity. Additionally, we found that stomatal opening under low atmospheric CO2 occurs independently of the GABA-modulated opening-channel ALMT9. Our results confirm that GABA has a role in modulating the rate of stomatal opening and closing - but not in response to CO2  per se.

2.
Curr Opin Biotechnol ; 86: 103069, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38341984

RESUMEN

As humanity looks towards expanding activity from low Earth orbit to the Moon and beyond, resource use efficiency and self-sustainability will be critical to ensuring success in the long term. Furthermore, solutions developed for the stringent requirements of space will be equally valuable in meeting sustainability goals here on Earth. Advances in synthetic biology allow us to harness the complex metabolism of life to produce the materials we need in situ. Translating those lessons learned from microbial systems to more carbon-efficient photosynthetic organisms is an area of growing interest. Plants can be engineered to sustainably meet a range of needs, from fuels to materials and medicines.


Asunto(s)
Vuelo Espacial , Biología Sintética , Plantas/metabolismo , Fotosíntesis
4.
New Phytol ; 241(1): 73-81, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37936524

RESUMEN

γ-Aminobutyric acid (GABA) accumulates rapidly under stress via the GABA shunt pathway, which has been implicated in reducing the accumulation of stress-induced reactive oxygen species (ROS) in plants. γ-Aminobutyric acid has been demonstrated to act as a guard-cell signal in Arabidopsis thaliana, modulating stomatal opening. Knockout of the major GABA synthesis enzyme Glutamate Decarboxylase 2 (GAD2) increases the aperture of gad2 mutants, which results in greater stomatal conductance and reduces water-use efficiency compared with wild-type plants. Here, we found that the additional loss of GAD1, GAD4, and GAD5 in gad2 leaves increased GABA deficiency but abolished the more open stomatal pore phenotype of gad2, which we link to increased cytosolic calcium (Ca2+ ) and ROS accumulation in gad1/2/4/5 guard cells. Compared with wild-type and gad2 plants, glutamate was ineffective in closing gad1/2/4/5 stomatal pores, whereas lowering apoplastic calcium, applying ROS inhibitors or complementation with GAD2 reduced gad1/2/4/5 guard-cell ROS, restored the gad2-like greater stomatal apertures of gad1/2/4/5 beyond that of wild-type. We conclude that GADs are important contributors to ROS homeostasis in guard cells likely via a Ca2+ -mediated pathway. As such, this study reveals greater complexity in GABA's role as a guard-cell signal and the interactions it has with other established signals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Estomas de Plantas , Ácido gamma-Aminobutírico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostasis , Ácido Abscísico/metabolismo
5.
New Phytol ; 238(2): 904-915, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683442

RESUMEN

Using microscopy to investigate stomatal behaviour is common in plant physiology research. Manual inspection and measurement of stomatal pore features is low throughput, relies upon expert knowledge to record stomatal features accurately, requires significant researcher time and investment, and can represent a significant bottleneck to research pipelines. To alleviate this, we introduce StomaAI (SAI): a reliable, user-friendly and adaptable tool for stomatal pore and density measurements via the application of deep computer vision, which has been initially calibrated and deployed for the model plant Arabidopsis (dicot) and the crop plant barley (monocot grass). SAI is capable of producing measurements consistent with human experts and successfully reproduced conclusions of published datasets. SAI boosts the number of images that can be evaluated in a fraction of the time, so can obtain a more accurate representation of stomatal traits than is routine through manual measurement. An online demonstration of SAI is hosted at https://sai.aiml.team, and the full local application is publicly available for free on GitHub through https://github.com/xdynames/sai-app.


Asunto(s)
Arabidopsis , Humanos , Fenotipo , Computadores , Estomas de Plantas/fisiología
6.
Plant Cell Environ ; 46(5): 1691-1704, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36654510

RESUMEN

Soil micronutrient availability, including zinc (Zn), is a limiting factor for crop yield. Arbuscular mycorrhizal (AM) fungi can improve host plant growth and nutrition through the mycorrhizal pathway of nutrient uptake. Although the physiology of Zn uptake through the mycorrhizal pathway is well established, the identity of the related molecular components are unknown. Here, RNA-seq analysis was used to identify genes differentially-regulated by AM colonization and soil Zn concentration in roots of Medicago truncatula. The putative Zn transporter gene MtZIP14 was markedly up-regulated in M. truncatula roots when colonized by Rhizophagus irregularis. MtZIP14 restored yeast growth under low Zn availability. Loss-of-function mutant plants (mtzip14) had reduced shoot biomass compared to the wild-type when colonized by AM fungi and grown under low and sufficient soil Zn concentration; at high soil Zn concentration, there were no genotypic differences in shoot biomass. The vesicular and arbuscular colonization of roots was lower in the mtzip14 plants regardless of soil Zn concentration. We propose that MtZIP14 is linked to AM colonization in M. truncatula plants, with the possibility that MtZIP14 function with AM colonization is linked to plant Zn nutrition.


Asunto(s)
Medicago truncatula , Micorrizas , Micorrizas/fisiología , Medicago truncatula/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Suelo , Simbiosis
7.
New Phytol ; 237(1): 60-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251512

RESUMEN

The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential ( Y p ) of crops is vital to address these challenges. In this review, we explore a component of Y p that has yet to be optimised - that being improvements in the efficiency with which light energy is converted into biomass ( ε c ) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production ( ε prod ) and efficiency of ATP use ( ε use ). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential for ε prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improve ε use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.


Asunto(s)
Dióxido de Carbono , Productos Agrícolas , Citocromo P-450 CYP2B1 , Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Productos Agrícolas/fisiología , Citocromo P-450 CYP2B1/metabolismo , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo
8.
Plant Cell ; 35(1): 139-161, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377770

RESUMEN

Research into crop yield and resilience has underpinned global food security, evident in yields tripling in the past 5 decades. The challenges that global agriculture now faces are not just to feed 10+ billion people within a generation, but to do so under a harsher, more variable, and less predictable climate, and in many cases with less water, more expensive inputs, and declining soil quality. The challenges of climate change are not simply to breed for a "hotter drier climate," but to enable resilience to floods and droughts and frosts and heat waves, possibly even within a single growing season. How well we prepare for the coming decades of climate variability will depend on our ability to modify current practices, innovate with novel breeding methods, and communicate and work with farming communities to ensure viability and profitability. Here we define how future climates will impact farming systems and growing seasons, thereby identifying the traits and practices needed and including exemplars being implemented and developed. Critically, this review will also consider societal perspectives and public engagement about emerging technologies for climate resilience, with participatory approaches presented as the best approach.


Asunto(s)
Agricultura , Suelo , Fenotipo , Estaciones del Año , Estrés Fisiológico
9.
Sci Rep ; 12(1): 15164, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071150

RESUMEN

Panicum miliaceum L. was domesticated in northern China at least 7000 years ago and was subsequentially adopted in many areas throughout Eurasia. One such locale is Areni-1 an archaeological cave site in Southern Armenia, where vast quantities archaeobotanical material were well preserved via desiccation. The rich botanical material found at Areni-1 includes P. miliaceum grains that were identified morphologically and14C dated to the medieval period (873 ± 36 CE and 1118 ± 35 CE). To investigate the demographic and evolutionary history of the Areni-1 millet, we used ancient DNA extraction, hybridization capture enrichment, and high throughput sequencing to assemble three chloroplast genomes from the medieval grains and then compared these sequences to 50 modern P. miliaceum chloroplast genomes. Overall, the chloroplast genomes contained a low amount of diversity with domesticated accessions separated by a maximum of 5 SNPs and little inference on demography could be made. However, in phylogenies the chloroplast genomes separated into two clades, similar to what has been reported for nuclear DNA from P. miliaceum. The chloroplast genomes of two wild (undomesticated) accessions of P. miliaceum contained a relatively large number of variants, 11 SNPs, not found in the domesticated accessions. These results demonstrate that P. miliaceum grains from archaeological sites can preserve DNA for at least 1000 years and serve as a genetic resource to study the domestication of this cereal crop.


Asunto(s)
Genoma del Cloroplasto , Panicum , Armenia , Grano Comestible/genética , Mijos , Panicum/genética
11.
Biology (Basel) ; 11(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36009788

RESUMEN

Plant-derived pharmacological agents have been used extensively to dissect the structure-function relationships of mammalian GABA receptors and ion channels. Picrotoxin is a non-competitive antagonist of mammalian GABAA receptors. Here, we report that picrotoxin inhibits the anion (malate) efflux mediated by wheat (Triticum aestivum) ALMT1 but has no effect on GABA transport. The EC50 for inhibition was 0.14 nM and 0.18 nM when the ALMTs were expressed in tobacco BY2 cells and in Xenopus oocytes, respectively. Patch clamping of the oocyte plasma membrane expressing wheat ALMT1 showed that picrotoxin inhibited malate currents from both sides of the membrane. These results demonstrate that picrotoxin inhibits anion efflux effectively and can be used as a new inhibitor to study the ion fluxes mediated by ALMT proteins that allow either GABA or anion transport.

12.
Front Plant Sci ; 13: 863971, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693188

RESUMEN

Grapevines (Vitis vinifera L., Vvi) on their roots are generally sensitive to salt-forming ions, particularly chloride (Cl-) when grown in saline environments. Grafting V. vinifera scions to Cl--excluding hybrid rootstocks reduces the impact of salinity. Molecular components underlying Cl--exclusion in Vitis species remain largely unknown, however, various anion channels and transporters represent good candidates for controlling this trait. Here, two nitrate/peptide transporter family (NPF) members VviNPF2.1 and VviNPF2.2 were isolated. Both highly homologous proteins localized to the plasma membrane of Arabidopsis (Arabidopsis thaliana) protoplasts. Both were expressed primarily in grapevine roots and leaves and were more abundant in a Cl--excluding rootstock compared to a Cl--includer. Quantitative PCR of grapevine roots revealed that VviNPF2.1 and 2.2 expression was downregulated by high [NO3 -] resupply post-starvation, but not affected by 25 mM Cl-. VviNPF2.2 was functionally characterized using an Arabidopsis enhancer trap line as a heterologous host which enabled cell-type-specific expression. Constitutive expression of VviNPF2.2 exclusively in the root epidermis and cortex reduced shoot [Cl-] after a 75 mM NaCl treatment. Higher expression levels of VviNPF2.2 correlated with reduced Arabidopsis xylem sap [NO3 -] when not salt stressed. We propose that when expressed in the root epidermis and cortex, VviNPF2.2 could function in passive anion efflux from root cells, which reduces the symplasmic Cl- available for root-to-shoot translocation. VviNPF2.2, through its role in the root epidermis and cortex, could, therefore, be beneficial to plants under salt stress by reducing net shoot Cl- accumulation.

13.
Funct Plant Biol ; 49(7): 672, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35675208

RESUMEN

Bread wheat (Triticum aestivum L.) is one of the most important food crops, however it is only moderately tolerant to salinity stress. To improve wheat yield under saline conditions, breeding for improved salinity tolerance of wheat is needed. We have identified nine quantitative trail loci (QTL) for different salt tolerance sub-traits in a recombinant inbred line (RIL) population, derived from the bi-parental cross of Excalibur × Kukri. This population was screened for salinity tolerance subtraits using a combination of both destructive and non-destructive phenotyping. Genotyping by sequencing (GBS) was used to construct a high-density genetic linkage map, consisting of 3236 markers, and utilised for mapping QTL. Of the nine mapped QTL, six were detected under salt stress, including QTL for maintenance of shoot growth under salinity (QG ( 1-5 ) .asl -5A , QG ( 1-5 ) .asl -7B ) sodium accumulation (QNa.asl -2A ), chloride accumulation (QCl.asl -2A , QCl.asl -3A ) and potassium : sodium ratio (QK :Na.asl -2DS2 ). Potential candidate genes within these QTL intervals were shortlisted using bioinformatics tools. These findings are expected to facilitate the breeding of new salt tolerant wheat cultivars. Soil salinity causes major yield losses in bread wheat, which is moderately tolerant to salinity stress. Using high throughput genotyping and phenotyping techniques, we identified quantitative trail loci (QTL) for different salt tolerance sub-traits in bread wheat and shortlisted potential candidate genes. These QTL and candidate genes may prove useful in breeding for salt tolerant wheat cultivars.

14.
Physiol Plant ; 174(3): e13709, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35580210

RESUMEN

Soybean (Glycine max) is an important crop globally for food and edible oil production. Soybean plants are sensitive to salinity (NaCl), with significant yield decreases reported under saline conditions. GmSALT3 is the dominant gene underlying a major QTL for salt tolerance in soybean. GmSALT3 encodes a transmembrane protein belonging to the plant cation/proton exchanger (CHX) family, and is predominately expressed in root phloem and xylem associated cells under both saline and non-saline conditions. It is currently unknown through which molecular mechanism(s) the ER-localised GmSALT3 contributes to salinity tolerance, as its localisation excludes direct involvement in ion exclusion. In order to gain insights into potential molecular mechanism(s), we used RNA-seq analysis of roots from two soybean NILs (near isogenic lines); NIL-S (salt-sensitive, Gmsalt3), and NIL-T (salt-tolerant, GmSALT3), grown under control and saline conditions (200 mM NaCl) at three time points (0 h, 6 h, and 3 days). Gene ontology (GO) analysis showed that NIL-T has greater responses aligned to oxidation reduction. ROS were less abundant and scavenging enzyme activity was greater in NIL-T, consistent with the RNA-seq data. Further analysis indicated that genes related to calcium signalling, vesicle trafficking and Casparian strip (CS) development were upregulated in NIL-T following salt treatment. We propose that GmSALT3 improves the ability of NIL-T to cope with saline stress through preventing ROS overaccumulation in roots, and potentially modulating Ca2+ signalling, vesicle trafficking and formation of diffusion barriers.


Asunto(s)
Fabaceae , Glycine max , Fabaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxígeno/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Glycine max/metabolismo
15.
New Phytol ; 235(5): 2128, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35616133
16.
Elife ; 112022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989335

RESUMEN

Plant cells maintain a low luminal pH in the trans-Golgi-network/early endosome (TGN/EE), the organelle in which the secretory and endocytic pathways intersect. Impaired TGN/EE pH regulation translates into severe plant growth defects. The identity of the proton pump and proton/ion antiporters that regulate TGN/EE pH have been determined, but an essential component required to complete the TGN/EE membrane transport circuit remains unidentified - a pathway for cation and anion efflux. Here, we have used complementation, genetically encoded fluorescent sensors, and pharmacological treatments to demonstrate that Arabidopsis cation chloride cotransporter (CCC1) is this missing component necessary for regulating TGN/EE pH and function. Loss of CCC1 function leads to alterations in TGN/EE-mediated processes including endocytic trafficking, exocytosis, and response to abiotic stress, consistent with the multitude of phenotypic defects observed in ccc1 knockout plants. This discovery places CCC1 as a central component of plant cellular function.


Asunto(s)
Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Cationes/metabolismo , Cloruros/metabolismo , Endosomas/metabolismo , Regulación de la Expresión Génica de las Plantas , Red trans-Golgi/genética , Arabidopsis/fisiología , Endocitosis , Homeostasis , Concentración de Iones de Hidrógeno , Red trans-Golgi/metabolismo
17.
Curr Opin Biotechnol ; 73: 246-252, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34563931

RESUMEN

Crewed missions to Mars are planned within the next twenty years. Production of food and materials in situ will eventually be necessary for mission success. This will require the development of crops which can thrive in environments we can sustain in Space. Here, we discuss the challenges we must solve to provide adequate nutrition to support long term Space habitation. Further, we propose that plants are an ideal biomanufacturing platform for producing pharmaceuticals and biomaterials on demand. Designing Space plants requires advances in our ability to engineer plant biology in a predictive manner. Parallel development of suitable tightly controlled growth environments, including extensive monitoring and sensing, will also be a key enabler. Collectively, such research promises to deliver solutions for progressing sustainable closed environment agriculture on Earth.


Asunto(s)
Vuelo Espacial , Agricultura , Productos Agrícolas
20.
Front Plant Sci ; 12: 794241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868188

RESUMEN

Salt tolerance is an important trait that affects the growth and yield of plants growing in saline environments. The salt tolerance gene GmSALT3 was cloned from the Chinese soybean cultivar Tiefeng 8, and its variation evaluated in Chinese wild soybeans and landraces. However, the potential role of GmSALT3 in cultivation, and its genetic variation throughout the history of Chinese soybean breeding, remains unknown. Here we identified five haplotypes of GmSALT3 in 279 Chinese soybean landraces using a whole genome resequencing dataset. Additionally, we developed five PCR-based functional markers: three indels and two cleaved amplified polymorphic sequences (CAPS) markers. A total of 706 Chinese soybean cultivars (released 1956-2012), and 536 modern Chinese breeding lines, were genotyped with these markers. The Chinese landraces exhibited relatively high frequencies of the haplotypes H1, H4, and H5. H1 was the predominant haplotype in both the northern region (NR) and Huanghuai region (HHR), and H5 and H4 were the major haplotypes present within the southern region (SR). In the 706 cultivars, H1, H2, and H5 were the common haplotypes, while H3 and H4 were poorly represented. Historically, H1 gradually decreased in frequency in the NR but increased in the HHR; while the salt-sensitive haplotype, H2, increased in frequency in the NR during six decades of soybean breeding. In the 536 modern breeding lines, H2 has become the most common haplotype in the NR, while H1 has remained the highest frequency haplotype in the HHR, and H5 and H1 were highest in the SR. Frequency changes resulting in geographically favored haplotypes indicates that strong selection has occurred over six decades of soybean breeding. Our molecular markers could precisely identify salt tolerant (98.9%) and sensitive (100%) accessions and could accurately trace the salt tolerance gene in soybean pedigrees. Our study, therefore, not only identified effective molecular markers for use in soybean, but also demonstrated how these markers can distinguish GmSALT3 alleles in targeted breeding strategies for specific ecoregions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA