Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hum Mol Genet ; 33(6): 501-509, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37975894

RESUMEN

Osteoarthritis is a prevalent, complex disease of the joints, and affects multiple intra-articular tissues. Here, we have examined genome-wide DNA methylation profiles of primary infrapatellar fat pad and matched blood samples from 70 osteoarthritis patients undergoing total knee replacement surgery. Comparing the DNA methylation profiles between these tissues reveal widespread epigenetic differences. We produce the first genome-wide methylation quantitative trait locus (mQTL) map of fat pad, and make the resource available to the wider community. Using two-sample Mendelian randomization and colocalization analyses, we resolve osteoarthritis GWAS signals and provide insights into the molecular mechanisms underpinning disease aetiopathology. Our findings provide the first view of the epigenetic landscape of infrapatellar fat pad primary tissue in osteoarthritis.


Asunto(s)
Epigenómica , Osteoartritis , Humanos , Tejido Adiposo , Epigénesis Genética , Procesamiento Proteico-Postraduccional
2.
Eur J Hum Genet ; 32(2): 215-223, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37903942

RESUMEN

Perturbation of lipid homoeostasis is a major risk factor for cardiovascular disease (CVD), the leading cause of death worldwide. We aimed to identify genetic variants affecting lipid levels, and thereby risk of CVD, in Greenlanders. Genome-wide association studies (GWAS) of six blood lipids, triglycerides, LDL-cholesterol, HDL-cholesterol, total cholesterol, as well as apolipoproteins A1 and B, were performed in up to 4473 Greenlanders. For genome-wide significant variants, we also tested for associations with additional traits, including CVD events. We identified 11 genome-wide significant loci associated with lipid traits. Most of these loci were already known in Europeans, however, we found a potential causal variant near PCSK9 (rs12117661), which was independent of the known PCSK9 loss-of-function variant (rs11491147). rs12117661 was associated with lower LDL-cholesterol (ßSD(SE) = -0.22 (0.03), p = 6.5 × 10-12) and total cholesterol (-0.17 (0.03), p = 1.1 × 10-8) in the Greenlandic study population. Similar associations were observed in Europeans from the UK Biobank, where the variant was also associated with a lower risk of CVD outcomes. Moreover, rs12117661 was a top eQTL for PCSK9 across tissues in European data from the GTEx portal, and was located in a predicted regulatory element, supporting a possible causal impact on PCSK9 expression. Combined, the 11 GWAS signals explained up to 16.3% of the variance of the lipid traits. This suggests that the genetic architecture of lipid levels in Greenlanders is different from Europeans, with fewer variants explaining the variance.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Humanos , Proproteína Convertasa 9/genética , Groenlandia , Triglicéridos/genética , Lípidos/genética , HDL-Colesterol , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Enfermedades Cardiovasculares/genética , Polimorfismo de Nucleótido Simple
3.
Mol Metab ; 78: 101810, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778719

RESUMEN

OBJECTIVES: Global cardiometabolic disease prevalence has grown rapidly over the years, making it the leading cause of death worldwide. Proteins are crucial components in biological pathways dysregulated in disease states. Identifying genetic components that influence circulating protein levels may lead to the discovery of biomarkers for early stages of disease or offer opportunities as therapeutic targets. METHODS: Here, we carry out a genome-wide association study (GWAS) utilising whole genome sequencing data in 3,005 individuals from the HELIC founder populations cohort, across 92 proteins of cardiometabolic relevance. RESULTS: We report 322 protein quantitative trait loci (pQTL) signals across 92 proteins, of which 76 are located in or near the coding gene (cis-pQTL). We link those association signals with changes in protein expression and cardiometabolic disease risk using colocalisation and Mendelian randomisation (MR) analyses. CONCLUSIONS: The majority of previously unknown signals we describe point to proteins or protein interactions involved in inflammation and immune response, providing genetic evidence for the contributing role of inflammation in cardiometabolic disease processes.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Humanos , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo/genética , Proteínas Sanguíneas , Inflamación/genética , Enfermedades Cardiovasculares/genética
4.
Clin Proteomics ; 20(1): 31, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550624

RESUMEN

BACKGROUND: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance. METHODS: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins. RESULTS: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F). CONCLUSION: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases.

5.
HGG Adv ; 4(3): 100214, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37448981

RESUMEN

Genetic prediction of common complex disease risk is an essential component of precision medicine. Currently, genome-wide association studies (GWASs) are mostly composed of European-ancestry samples and resulting polygenic scores (PGSs) have been shown to poorly transfer to other ancestries partly due to heterogeneity of allelic effects between populations. Fixed-effects (FETA) and random-effects (RETA) trans-ancestry meta-analyses do not model such ancestry-related heterogeneity, while ancestry-specific (AS) scores may suffer from low power due to low sample sizes. In contrast, trans-ancestry meta-regression (TAMR) builds ancestry-aware PGS that account for more complex trans-ancestry architectures. Here, we examine the predictive performance of these four PGSs under multiple genetic architectures and ancestry configurations. We show that the predictive performance of FETA and RETA is strongly affected by cross-ancestry genetic heterogeneity, while AS PGS performance decreases in under-represented target populations. TAMR PGS is also impacted by heterogeneity but maintains good prediction performance in most situations, especially in ancestry-diverse scenarios. In simulations of human complex traits, TAMR scores currently explain 25% more phenotypic variance than AS in triglyceride levels and 33% more phenotypic variance than FETA in type 2 diabetes in most non-European populations. Importantly, a high proportion of non-European-ancestry individuals is needed to reach prediction levels that are comparable in those populations to the one observed in European-ancestry studies. Our results highlight the need to rebalance the ancestral composition of GWAS to enable accurate prediction in non-European-ancestry groups, and demonstrate the relevance of meta-regression approaches for compensating some of the current population biases in GWAS.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial/genética , Metaanálisis como Asunto
6.
Res Sq ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034613

RESUMEN

Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioral traits and the disease etiology of neuropsychiatric disorders. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-related proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-related traits such as sleeping, smoking, feelings, alcohol intake, mental health, and psychiatric disorders. Integrating with established drug information, we validated 13 out of 13 matched combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets. This consortium effort provides a large-scale proteogenomic resource for biomedical research on human behaviors and other neuro-related phenotypes.

7.
medRxiv ; 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36824751

RESUMEN

Understanding the genetic basis of neuro-related proteins is essential for dissecting the disease etiology of neuropsychiatric disorders and other complex traits and diseases. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-reiated proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-reiated traits as well as complex diseases such as hypertension, high cholesterol, immune-related disorders, and psychiatric disorders. Integrating with established drug information, we validated 13 combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets for diseases and comorbidities. This consortium effort provides a large-scale proteogenomic resource for biomedical research.

8.
Lancet Reg Health Eur ; 24: 100529, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36649380

RESUMEN

Background: The genetic disease architecture of Inuit includes a large number of common high-impact variants. Identification of such variants contributes to our understanding of the genetic aetiology of diseases and improves global equity in genomic personalised medicine. We aimed to identify and characterise novel variants in genes associated with Maturity Onset Diabetes of the Young (MODY) in the Greenlandic population. Methods: Using combined data from Greenlandic population cohorts of 4497 individuals, including 448 whole genome sequenced individuals, we screened 14 known MODY genes for previously identified and novel variants. We functionally characterised an identified novel variant and assessed its association with diabetes prevalence and cardiometabolic traits and population impact. Findings: We identified a novel variant in the known MODY gene HNF1A with an allele frequency of 1.9% in the Greenlandic Inuit and absent elsewhere. Functional assays indicate that it prevents normal splicing of the gene. The variant caused lower 30-min insulin (ß = -232 pmol/L, ßSD = -0.695, P = 4.43 × 10-4) and higher 30-min glucose (ß = 1.20 mmol/L, ßSD = 0.441, P = 0.0271) during an oral glucose tolerance test. Furthermore, the variant was associated with type 2 diabetes (OR 4.35, P = 7.24 × 10-6) and HbA1c (ß = 0.113 HbA1c%, ßSD = 0.205, P = 7.84 × 10-3). The variant explained 2.5% of diabetes variance in Greenland. Interpretation: The reported variant has the largest population impact of any previously reported variant within a MODY gene. Together with the recessive TBC1D4 variant, we show that close to 1 in 5 cases of diabetes (18%) in Greenland are associated with high-impact genetic variants compared to 1-3% in large populations. Funding: Novo Nordisk Foundation, Independent Research Fund Denmark, and Karen Elise Jensen's Foundation.

9.
Hum Mol Genet ; 32(8): 1266-1275, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36349687

RESUMEN

Cardiometabolic diseases, such as type 2 diabetes and cardiovascular disease, have a high public health burden. Understanding the genetically determined regulation of proteins that are dysregulated in disease can help to dissect the complex biology underpinning them. Here, we perform a protein quantitative trait locus (pQTL) analysis of 248 serum proteins relevant to cardiometabolic processes in 2893 individuals. Meta-analyzing whole-genome sequencing (WGS) data from two Greek cohorts, MANOLIS (n = 1356; 22.5× WGS) and Pomak (n = 1537; 18.4× WGS), we detect 301 independently associated pQTL variants for 170 proteins, including 12 rare variants (minor allele frequency < 1%). We additionally find 15 pQTL variants that are rare in non-Finnish European populations but have drifted up in the frequency in the discovery cohorts here. We identify proteins causally associated with cardiometabolic traits, including Mep1b for high-density lipoprotein (HDL) levels, and describe a knock-out (KO) Mep1b mouse model. Our findings furnish insights into the genetic architecture of the serum proteome, identify new protein-disease relationships and demonstrate the importance of isolated populations in pQTL analysis.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Animales , Ratones , Fenotipo , Secuenciación Completa del Genoma , Proteínas Sanguíneas/genética , Estudio de Asociación del Genoma Completo
10.
Mol Metab ; 61: 101509, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504531

RESUMEN

OBJECTIVE: Deep sequencing offers unparalleled access to rare variants in human populations. Understanding their role in disease is a priority, yet prohibitive sequencing costs mean that many cohorts lack the sample size to discover these effects on their own. Meta-analysis of individual variant scores allows the combination of rare variants across cohorts and study of their aggregated effect at the gene level, boosting discovery power. However, the methods involved have largely not been field-tested. In this study, we aim to perform the first meta-analysis of gene-based rare variant aggregation optimal tests, applied to the human cardiometabolic proteome. METHODS: Here, we carry out this analysis across MANOLIS, Pomak and ORCADES, three isolated European cohorts with whole-genome sequencing (total N = 4,422). We examine the genetic architecture of 250 proteomic traits of cardiometabolic relevance. We use a containerised pipeline to harmonise variant lists across cohorts and define four sets of qualifying variants. For every gene, we interrogate protein-damaging variants, exonic variants, exonic and regulatory variants, and regulatory only variants, using the CADD and Eigen scores to weigh variants according to their predicted functional consequence. We perform single-cohort rare variant analysis and meta-analyse variant scores using the SMMAT package. RESULTS: We describe 5 rare variant pQTLs (RV-pQTL) which pass our stringent significance threshold (7.45 × 10-11) and quality control procedure. These were split between four cis signals for MARCO, TEK, MMP2 and MPO, and one trans association for GDF2 in the SERPINA11 gene. We show that the cis-MPO association, which was not detectable using the single-point data alone, is driven by 5 missense and frameshift variants. These include rs140636390 and rs119468010, which are specific to MANOLIS and ORCADES, respectively. We show how this kind of signal could improve the predictive accuracy of genetic factors in common complex disease such as stroke and cardiovascular disease. CONCLUSIONS: Our proof-of-concept study demonstrates the power of gene-based meta-analyses for discovering disease-relevant associations complementing common-variant signals by incorporating population-specific rare variation.


Asunto(s)
Enfermedades Cardiovasculares , Proteómica , Enfermedades Cardiovasculares/genética , Estudios de Cohortes , Humanos , Fenotipo , Secuenciación Completa del Genoma
11.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35387486

RESUMEN

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Estudios Transversales , Estudio de Asociación del Genoma Completo , Humanos , Receptores de Coronavirus , SARS-CoV-2
12.
Sci Rep ; 12(1): 1131, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064169

RESUMEN

Haematological traits are linked to cardiovascular, metabolic, infectious and immune disorders, as well as cancer. Here, we examine the role of genetic variation in shaping haematological traits in two isolated Mediterranean populations. Using whole-genome sequencing data at 22× depth for 1457 individuals from Crete (MANOLIS) and 1617 from the Pomak villages in Greece, we carry out a genome-wide association scan for haematological traits using linear mixed models. We discover novel associations (p < 5 × 10-9) of five rare non-coding variants with alleles conferring effects of 1.44-2.63 units of standard deviation on red and white blood cell count, platelet and red cell distribution width. Moreover, 10.0% of individuals in the Pomak population and 6.8% in MANOLIS carry a pathogenic mutation in the Haemoglobin Subunit Beta (HBB) gene. The mutational spectrum is highly diverse (10 different mutations). The most frequent mutation in MANOLIS is the common Mediterranean variant IVS-I-110 (G>A) (rs35004220). In the Pomak population, c.364C>A ("HbO-Arab", rs33946267) is most frequent (4.4% allele frequency). We demonstrate effects on haematological and other traits, including bilirubin, cholesterol, and, in MANOLIS, height and gestation age. We find less severe effects on red blood cell traits for HbS, HbO, and IVS-I-6 (T>C) compared to other b+ mutations. Overall, we uncover allelic diversity of HBB in Greek isolated populations and find an important role for additional rare variants outside of HBB.


Asunto(s)
Índices de Eritrocitos/genética , Genética de Población , Globinas beta/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Recuento de Eritrocitos , Frecuencia de los Genes , Variación Genética , Estudio de Asociación del Genoma Completo , Grecia , Humanos , Recuento de Leucocitos , Mutación , Pruebas de Función Plaquetaria , Secuenciación Completa del Genoma
13.
Nat Commun ; 12(1): 7042, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857772

RESUMEN

Despite the increasing global burden of neurological disorders, there is a lack of effective diagnostic and therapeutic biomarkers. Proteins are often dysregulated in disease and have a strong genetic component. Here, we carry out a protein quantitative trait locus analysis of 184 neurologically-relevant proteins, using whole genome sequencing data from two isolated population-based cohorts (N = 2893). In doing so, we elucidate the genetic landscape of the circulating proteome and its connection to neurological disorders. We detect 214 independently-associated variants for 107 proteins, the majority of which (76%) are cis-acting, including 114 variants that have not been previously identified. Using two-sample Mendelian randomisation, we identify causal associations between serum CD33 and Alzheimer's disease, GPNMB and Parkinson's disease, and MSR1 and schizophrenia, describing their clinical potential and highlighting drug repurposing opportunities.


Asunto(s)
Enfermedad de Alzheimer/genética , Glicoproteínas de Membrana/genética , Enfermedad de Parkinson/genética , Receptores Depuradores de Clase A/genética , Esquizofrenia/genética , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Biomarcadores/sangre , Estudios de Cohortes , Expresión Génica , Ontología de Genes , Predisposición Genética a la Enfermedad , Genoma Humano , Humanos , Glicoproteínas de Membrana/sangre , Análisis de la Aleatorización Mendeliana , Anotación de Secuencia Molecular , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Proteoma/genética , Proteoma/metabolismo , Sitios de Carácter Cuantitativo , Receptores Depuradores de Clase A/sangre , Esquizofrenia/sangre , Esquizofrenia/diagnóstico , Esquizofrenia/patología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/sangre , Secuenciación Completa del Genoma
15.
Cell ; 184(18): 4784-4818.e17, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34450027

RESUMEN

Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.


Asunto(s)
Predisposición Genética a la Enfermedad , Genética de Población , Osteoartritis/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Osteoartritis/tratamiento farmacológico , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Caracteres Sexuales , Transducción de Señal/genética
16.
Nat Commun ; 11(1): 6336, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303764

RESUMEN

The human proteome is a crucial intermediate between complex diseases and their genetic and environmental components, and an important source of drug development targets and biomarkers. Here, we comprehensively assess the genetic architecture of 257 circulating protein biomarkers of cardiometabolic relevance through high-depth (22.5×) whole-genome sequencing (WGS) in 1328 individuals. We discover 131 independent sequence variant associations (P < 7.45 × 10-11) across the allele frequency spectrum, all of which replicate in an independent cohort (n = 1605, 18.4x WGS). We identify for the first time replicating evidence for rare-variant cis-acting protein quantitative trait loci for five genes, involving both coding and noncoding variation. We construct and validate polygenic scores that explain up to 45% of protein level variation. We find causal links between protein levels and disease risk, identifying high-value biomarkers and drug development targets.


Asunto(s)
Miocardio/metabolismo , Proteoma/genética , Secuenciación Completa del Genoma , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Humanos , Herencia Multifactorial/genética , Proteoma/metabolismo , Sitios de Carácter Cuantitativo/genética , Factores de Riesgo
17.
Genet Epidemiol ; 44(1): 79-89, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31520489

RESUMEN

Copy number variants (CNVs) play an important role in a number of human diseases, but the accurate calling of CNVs remains challenging. Most current approaches to CNV detection use raw read alignments, which are computationally intensive to process. We use a regression tree-based approach to call germline CNVs from whole-genome sequencing (WGS, >18x) variant call sets in 6,898 samples across four European cohorts, and describe a rich large variation landscape comprising 1,320 CNVs. Eighty-one percent of detected events have been previously reported in the Database of Genomic Variants. Twenty-three percent of high-quality deletions affect entire genes, and we recapitulate known events such as the GSTM1 and RHD gene deletions. We test for association between the detected deletions and 275 protein levels in 1,457 individuals to assess the potential clinical impact of the detected CNVs. We describe complex CNV patterns underlying an association with levels of the CCL3 protein (MAF = 0.15, p = 3.6x10-12 ) at the CCL3L3 locus, and a novel cis-association between a low-frequency NOMO1 deletion and NOMO1 protein levels (MAF = 0.02, p = 2.2x10-7 ). This study demonstrates that existing population-wide WGS call sets can be mined for germline CNVs with minimal computational overhead, delivering insight into a less well-studied, yet potentially impactful class of genetic variant.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genética de Población/métodos , Genoma Humano/genética , Quimiocina CCL3/genética , Eliminación de Gen , Estudio de Asociación del Genoma Completo , Genómica , Glutatión Transferasa/genética , Humanos , Proteína Nodal/genética , Proteínas Recombinantes de Fusión/genética , Secuenciación Completa del Genoma
18.
Nutrients ; 11(12)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847144

RESUMEN

The present study describes the geographically isolated Pomak population and its particular dietary patterns in relationship to cardiovascular risk factors. We collected a population-based cohort in a cross-sectional study, with detailed anthropometric, biochemical, clinical, and lifestyle parameter information. Dietary patterns were derived through principal component analysis based on a validated food-frequency questionnaire, administered to 1702 adult inhabitants of the Pomak villages on the Rhodope mountain range in Greece. A total of 69.9% of the participants were female with a population mean age of 44.9 years; 67% of the population were overweight or obese with a significantly different prevalence for obesity between men and women (17.5% vs. 37.5%, respectively, p < 0.001). Smoking was more prevalent in men (45.8% vs. 2.2%, p < 0.001), as 97.3% of women had never smoked. Four dietary patterns emerged as characteristic of the population, and were termed "high in sugars", "quick choices", "balanced", and "homemade". Higher adherence to the "high in sugars" dietary pattern was associated with increased glucose levels (p < 0.001) and increased risk of hypertension (OR (95% CI) 2.61 (1.55, 4.39), p < 0.001) and nominally associated with high blood glucose levels (OR (95% CI) 1.85 (1.11, 3.08), p = 0.018), compared to lower adherence. Overall, we characterize the dietary patterns of the Pomak population and describe associations with cardiovascular risk factors.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Dieta/estadística & datos numéricos , Azúcares de la Dieta/análisis , Etnicidad/estadística & datos numéricos , Sobrepeso/epidemiología , Adulto , Bulgaria/epidemiología , Femenino , Grecia/epidemiología , Humanos , Hipertensión , Islamismo , Estilo de Vida , Masculino , Persona de Mediana Edad , Obesidad/epidemiología , Factores de Riesgo
19.
Nat Commun ; 10(1): 4330, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551420

RESUMEN

Most genome-wide association studies are based on samples of European descent. We assess whether the genetic determinants of blood lipids, a major cardiovascular risk factor, are shared across populations. Genetic correlations for lipids between European-ancestry and Asian cohorts are not significantly different from 1. A genetic risk score based on LDL-cholesterol-associated loci has consistent effects on serum levels in samples from the UK, Uganda and Greece (r = 0.23-0.28, p < 1.9 × 10-14). Overall, there is evidence of reproducibility for ~75% of the major lipid loci from European discovery studies, except triglyceride loci in the Ugandan samples (10% of loci). Individual transferable loci are identified using trans-ethnic colocalization. Ten of fourteen loci not transferable to the Ugandan population have pleiotropic associations with BMI in Europeans; none of the transferable loci do. The non-transferable loci might affect lipids by modifying food intake in environments rich in certain nutrients, which suggests a potential role for gene-environment interactions.


Asunto(s)
Pueblo Asiatico/genética , Población Negra/genética , Lípidos/sangre , Población Blanca/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Lípidos/genética , Factores de Riesgo
20.
Nat Commun ; 10(1): 3421, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366887

RESUMEN

Transposable elements (TEs) are mobile parasitic sequences that have been repeatedly coopted during evolution to generate new functions and rewire gene regulatory networks. Yet, the contribution of active TEs to the creation of heritable mutations remains unknown. Using TE accumulation lines in Arabidopsis thaliana we show that once initiated, transposition produces an exponential spread of TE copies, which rapidly leads to high mutation rates. Most insertions occur near or within genes and targets differ between TE families. Furthermore, we uncover an essential role of the histone variant H2A.Z in the preferential integration of Ty1/copia retrotransposons within environmentally responsive genes and away from essential genes. We also show that epigenetic silencing of new Ty1/copia copies can affect their impact on major fitness-related traits, including flowering time. Our findings demonstrate that TEs are potent episodic (epi)mutagens that, thanks to marked chromatin tropisms, limit the mutation load and increase the potential for rapid adaptation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Elementos Transponibles de ADN/genética , Histonas/genética , Retroelementos/genética , Adaptación Fisiológica/genética , Genoma de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA