Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 179: 83-94, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447809

RESUMEN

The terminal protein in the complement cascade C5a is a potent inflammatory molecule and chemoattractant that is involved in the pathology of multiple inflammatory diseases including sepsis and arthritis, making it a promising protein to target with immunotherapies. Active immunotherapies, in which patients are immunized against problematic self-molecules and generate therapeutic antibodies as a result, have received increasing interest as an alternative to traditional monoclonal antibody treatments. In previous work, we have designed supramolecular self-assembling peptide nanofibers as active immunotherapies with defined combinations of B- and T-cell epitopes. Herein, the self-assembling peptide Q11 platform was employed to generate a C5a-targeting active immunotherapy. Two of three predicted B-cell epitope peptides from C5a were found to be immunogenic when displayed within Q11 nanofibers, and the nanofibers were capable of reducing C5a serum concentrations following immunization. Contrastingly, C5a's precursor protein C5 maintained its original concentration, promising to minimize side effects heretofore associated with C5-targeted therapies. Immunization protected mice against an LPS-challenge model of sepsis, and it reduced clinical severity in a model of collagen-antibody induced arthritis. Together, this work indicates the potential for targeting terminal complement proteins with active immunotherapies by leveraging the immunogenicity of self-assembled peptide nanomaterials. STATEMENT OF SIGNIFICANCE: Chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease are currently treated primarily with monoclonal antibodies against key inflammatory mediators. While helpful for many patients, they have high non-response rates, are costly, and commonly fail as anti-drug antibodies are raised by the patient. The approach we describe here explores a fundamentally different treatment paradigm: raising therapeutic antibody responses with an active immunotherapy. We employ innovative supramolecular peptide nanomaterials to elicit neutralizing antibody responses against complement component C5a and demonstrate therapeutic efficacy in preclinical mouse models of sepsis and rheumatoid arthritis. The strategy reported may represent a potential alternative to monoclonal antibody therapies.


Asunto(s)
Complemento C5a , Inmunoterapia , Inflamación , Nanofibras , Péptidos , Animales , Nanofibras/química , Complemento C5a/inmunología , Péptidos/química , Péptidos/inmunología , Péptidos/farmacología , Inmunoterapia/métodos , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Sepsis/inmunología , Sepsis/terapia , Artritis Experimental/inmunología , Artritis Experimental/terapia , Artritis Experimental/patología
2.
Front Bioeng Biotechnol ; 10: 848699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252157

RESUMEN

The gas exchange units of the lung, the alveoli, are mechanically active and undergo cyclic deformation during breathing. The epithelial cells that line the alveoli contribute to lung function by reducing surface tension via surfactant secretion, which is highly influenced by the breathing-associated mechanical cues. These spatially heterogeneous mechanical cues have been linked to several physiological and pathophysiological states. Here, we describe the development of a microfluidically assisted lung cell culture model that incorporates heterogeneous cyclic stretching to mimic alveolar respiratory motions. Employing this device, we have examined the effects of respiratory biomechanics (associated with breathing-like movements) and strain heterogeneity on alveolar epithelial cell functions. Furthermore, we have assessed the potential application of this platform to model altered matrix compliance associated with lung pathogenesis and ventilator-induced lung injury. Lung microphysiological platforms incorporating human cells and dynamic biomechanics could serve as an important tool to delineate the role of alveolar micromechanics in physiological and pathological outcomes in the lung.

3.
Adv Healthc Mater ; 10(23): e2100777, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34601809

RESUMEN

Convergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials can surpass the capabilities of their parent material. Herein, the modification of hyaluronic acid (HA) to exhibit self-healing properties is described, and its physical and biological function both in vitro and in vivo is studied. The in vitro findings showed that self-healing HA designed to undergo self-repair improves lubrication, enhances free radical scavenging, and attenuates enzymatic degradation compared to unmodified HA. Longitudinal imaging following intraarticular injection of self-healing HA shows improved in vivo retention despite its low molecular weight. Concomitant with these functions, intraarticular injection of self-healing HA mitigates anterior cruciate ligament injury-mediated cartilage degeneration in rodents. This proof-of-concept study shows how incorporation of functional properties such as self-healing can be used to surpass the existing capabilities of biolubricants.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Cartílago Articular , Humanos , Ácido Hialurónico , Inyecciones Intraarticulares , Lubrificación , Peso Molecular
4.
Biomed Res Int ; 2017: 9831534, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28540307

RESUMEN

As the gap between donors and patients in need of an organ transplant continues to widen, research in regenerative medicine seeks to provide alternative strategies for treatment. One of the most promising techniques for tissue and organ regeneration is decellularization, in which the extracellular matrix (ECM) is isolated from its native cells and genetic material in order to produce a natural scaffold. The ECM, which ideally retains its inherent structural, biochemical, and biomechanical cues, can then be recellularized to produce a functional tissue or organ. While decellularization can be accomplished using chemical and enzymatic, physical, or combinative methods, each strategy has both benefits and drawbacks. The focus of this review is to compare the advantages and disadvantages of these methods in terms of their ability to retain desired ECM characteristics for particular tissues and organs. Additionally, a few applications of constructs engineered using decellularized cell sheets, tissues, and whole organs are discussed.


Asunto(s)
Matriz Extracelular/química , Medicina Regenerativa/tendencias , Ingeniería de Tejidos/tendencias , Andamios del Tejido/química , Matriz Extracelular/genética , Humanos , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA