Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661210

RESUMEN

Nucleotide repeat expansion disorders, a group of genetic diseases characterized by the expansion of specific DNA sequences, pose significant challenges to treatment and therapy development. Here, we present a precise and programmable method called prime editor-mediated correction of nucleotide repeat expansion (PE-CORE) for correcting pathogenic nucleotide repeat expansion. PE-CORE leverages a prime editor and paired pegRNAs to achieve targeted correction of repeat sequences. We demonstrate the effectiveness of PE-CORE in HEK293T cells and patient-derived induced pluripotent stem cells (iPSCs). Specifically, we focus on spinal and bulbar muscular atrophy and spinocerebellar ataxia type, two diseases associated with nucleotide repeat expansion. Our results demonstrate the successful correction of pathogenic expansions in iPSCs and subsequent differentiation into motor neurons. Specifically, we detect distinct downshifts in the size of both the mRNA and protein, confirming the functional correction of the iPSC-derived motor neurons. These findings highlight PE-CORE as a precision tool for addressing the intricate challenges of nucleotide repeat expansion disorders, paving the way for targeted therapies and potential clinical applications.

2.
iScience ; 26(5): 106603, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37128611

RESUMEN

G proteins are major signaling partners for G protein-coupled receptors (GPCRs). Although stepwise structural changes during GPCR-G protein complex formation and guanosine diphosphate (GDP) release have been reported, no information is available with regard to guanosine triphosphate (GTP) binding. Here, we used a novel Bayesian integrative modeling framework that combines data from hydrogen-deuterium exchange mass spectrometry, tryptophan-induced fluorescence quenching, and metadynamics simulations to derive a kinetic model and atomic-level characterization of stepwise conformational changes incurred by the ß2-adrenergic receptor (ß2AR)-Gs complex after GDP release and GTP binding. Our data suggest rapid GTP binding and GTP-induced dissociation of Gαs from ß2AR and Gßγ, as opposed to a slow closing of the Gαs α-helical domain (AHD). Yeast-two-hybrid screening using Gαs AHD as bait identified melanoma-associated antigen D2 (MAGE D2) as a novel AHD-binding protein, which was also shown to accelerate the GTP-induced closing of the Gαs AHD.

3.
Viruses ; 12(9)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911874

RESUMEN

Since the global outbreak of SARS-CoV-2 (COVID-19), infections of diverse human organs along with multiple symptoms continue to be reported. However, the susceptibility of the brain to SARS-CoV-2, and the mechanisms underlying neurological infection are still elusive. Here, we utilized human embryonic stem cell-derived brain organoids and monolayer cortical neurons to investigate infection of brain with pseudotyped SARS-CoV-2 viral particles. Spike-containing SARS-CoV-2 pseudovirus infected neural layers within brain organoids. The expression of ACE2, a host cell receptor for SARS-CoV-2, was sustained during the development of brain organoids, especially in the somas of mature neurons, while remaining rare in neural stem cells. However, pseudotyped SARS-CoV-2 was observed in the axon of neurons, which lack ACE2. Neural infectivity of SARS-CoV-2 pseudovirus did not increase in proportion to viral load, but only 10% of neurons were infected. Our findings demonstrate that brain organoids provide a useful model for investigating SARS-CoV-2 entry into the human brain and elucidating the susceptibility of the brain to SARS-CoV-2.


Asunto(s)
Betacoronavirus/fisiología , Neuronas/virología , Organoides/virología , Prosencéfalo/virología , Glicoproteína de la Espiga del Coronavirus/fisiología , Enzima Convertidora de Angiotensina 2 , Axones/enzimología , Diferenciación Celular , Células Cultivadas , Corteza Cerebral/citología , Células Madre Embrionarias/virología , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/enzimología , Células-Madre Neurales/virología , Neuronas/enzimología , Peptidil-Dipeptidasa A/fisiología , Prosencéfalo/citología , Receptores Virales/fisiología , SARS-CoV-2 , Carga Viral , Tropismo Viral , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA