Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Clin Colon Rectal Surg ; 37(3): 133-139, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606045

RESUMEN

The field of cancer genetics has evolved significantly over the past 30 years. Genetic testing has become less expensive and more comprehensive which has changed practice patterns. It is no longer necessary to restrict testing to those with the highest likelihood of testing positive. In addition, we have learned that the criteria developed to determine who has the highest likelihood of testing positive are neither sensitive nor specific. As a result, the field is moving from testing only the highest risk patients identified based on testing criteria to testing all cancer patients. This requires new service delivery models where testing can be mainstreamed into oncology clinics and posttest genetic counseling can be provided to individuals who test positive and those with concerning personal or family histories who test negative. The use of videos, testing kiosks, chatbots, and genetic counseling assistants have been employed to help facilitate testing at a larger scale and have good patient uptake and satisfaction. While testing is important for cancer patients as it may impact their treatment, future cancer risks, and family member's cancer risks, it is unfortunate that their cancer could not be prevented in the first place. Population testing for all adults would be a strategy to identify individuals with adult-onset diseases before they develop cancer in an attempt to prevent it entirely. A few research studies (Healthy Nevada and MyCode) have offered population testing for the three Centers for Disease Control and Prevention Tier 1 conditions: hereditary breast and ovarian cancer syndrome, Lynch syndrome, and familial hypercholesterolemia finding a prevalence of 1 in 70 individuals in the general population. We anticipate that testing for all cancer patients and the general population will continue to increase over the next 20 years and the genetics community needs to help lead the way to ensure this happens in a responsible manner.

2.
Fam Cancer ; 22(4): 437-448, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37341816

RESUMEN

Transgender and gender diverse (TGD) populations with hereditary cancer syndromes face unique obstacles to identifying and obtaining appropriate cancer surveillance and risk-reducing procedures. There is a lack of care provider knowledge about TGD health management. Lynch syndrome (LS) is one of the most common hereditary cancer syndromes, affecting an estimated 1 in 279 individuals. There are no clinical guidelines specific for TGD individuals with LS, highlighting a need to improve the quality of care for this population. There is an urgent need for cancer surveillance recommendations for TGD patients. This commentary provides recommendations for cancer surveillance, risk-reducing strategies, and genetic counseling considerations for TGD patients with LS.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Personas Transgénero , Humanos , Personas Transgénero/psicología , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Asesoramiento Genético
3.
Exp Parasitol ; 156: 68-78, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26071205

RESUMEN

Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide. It colonizes the lumen and epithelial surface of the small intestine, but does not invade the mucosa. Acute infection causes only minimal mucosal inflammation. Effective immune defenses exist, yet their identity and mechanisms remain incompletely understood. Interleukin (IL)-17A has emerged as an important cytokine involved in inflammation and antimicrobial defense against bacterial pathogens at mucosal surfaces. In this study, we demonstrate that IL-17A has a crucial function in host defense against Giardia infection. Using murine infection models with G. muris and G. lamblia, we observed marked and selective induction of intestinal IL-17A with peak expression after 2 weeks. Th17 cells in the lamina propria and innate immune cells in the epithelial compartment of the small intestine were responsible for the IL-17A response. Experiments in gene-targeted mice revealed that the cytokine, and its cognate receptor IL-17RA, were required for eradication of the parasite. The actions of the cytokine were mediated by hematopoietic cells, and were required for the transport of IgA into the intestinal lumen, since IL-17A deficiency led to marked reduction of fecal IgA levels, as well as for increased intestinal expression of several other potential effectors, including ß-defensin 1 and resistin-like molecule ß. In contrast, intestinal hypermotility, another major antigiardial defense mechanism, was not impacted by IL-17A loss. Taken together, these findings demonstrate that IL-17A and IL-17 receptor signaling are essential for intestinal defense against the important lumen-dwelling intestinal parasite Giardia.


Asunto(s)
Anticuerpos Antiprotozoarios/biosíntesis , Giardia/inmunología , Giardiasis/inmunología , Inmunoglobulina A/biosíntesis , Interleucina-17/metabolismo , Animales , Anticuerpos Antiprotozoarios/inmunología , Linfocitos T CD4-Positivos/inmunología , Quimera , Giardia lamblia/inmunología , Células Madre Hematopoyéticas/inmunología , Inmunoglobulina A/inmunología , Interleucina-17/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/parasitología , Intestino Delgado/inmunología , Intestino Delgado/parasitología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Transducción de Señal/inmunología , Organismos Libres de Patógenos Específicos , Células Th17/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA