Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heredity (Edinb) ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745070

RESUMEN

Different host plants represent ecologically dissimilar environments for phytophagous insects. The resulting divergent selection can promote the evolution of specialized host races, provided that gene flow is reduced between populations feeding on different plants. In black bean aphids belonging to the Aphis fabae complex, several morphologically cryptic taxa have been described based on their distinct host plant preferences. However, host choice and mate choice are largely decoupled in these insects: they are host-alternating and migrate between specific summer host plants and shared winter hosts, with mating occurring on the shared hosts. This provides a yearly opportunity for gene flow among aphids using different summer hosts, and raises the question if and to what extent the ecologically defined taxa are reproductively isolated. Here, we analyzed a geographically and temporally structured dataset of microsatellite genotypes from A. fabae that were mostly collected from their main winter host Euonymus europaeus, and additionally from another winter host and fourteen summer hosts. The data reveals multiple, strongly differentiated genetic clusters, which differ in their association with different summer and winter hosts. The clusters also differ in the frequency of infection with two heritable, facultative endosymbionts, separately hinting at reproductive isolation and divergent ecological selection. Furthermore, we found evidence for occasional hybridization among genetic clusters, with putative hybrids collected more frequently in spring than in autumn. This suggests that similar to host races in other phytophagous insects, both prezygotic and postzygotic barriers including selection against hybrids maintain genetic differentiation among A. fabae taxa, despite a common mating habitat.

2.
J Evol Biol ; 37(2): 162-170, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38366251

RESUMEN

Host-parasite coevolution is mediated by genetic interactions between the antagonists and may lead to reciprocal adaptation. In the black bean aphid, Aphis fabae fabae, resistance to parasitoids can be conferred by the heritable bacterial endosymbiont Hamiltonella defensa. H. defensa has been shown to be variably protective against different parasitoid species, and different genotypes of the black bean aphid's main parasitoid Lysiphlebus fabarum. However, these results were obtained using haphazard combinations of laboratory-reared insect lines with different origins, making it unclear how representative they are of natural, locally (co)adapted communities. We therefore comprehensively sampled the parasitoids of a natural A. f. fabae population and measured the ability of the five most abundant species to parasitize aphids carrying the locally prevalent H. defensa haplotypes. H. defensa provided resistance only against the dominant parasitoid L. fabarum (70% of all parasitoids), but not against less abundant parasitoids, and resistance to L. fabarum acted in a genotype-specific manner (G × G interactions between H. defensa and L. fabarum). These results confirm that strong species- and genotype-specificity of symbiont-conferred resistance is indeed a hallmark of wild A. f. fabae populations, and they are consistent with symbiont-mediated adaptation of aphids to the parasitoids posing the highest risk.


Asunto(s)
Áfidos , Avispas , Animales , Áfidos/genética , Áfidos/microbiología , Avispas/genética , Interacciones Huésped-Parásitos/genética , Simbiosis , Enterobacteriaceae
3.
Mol Ecol ; 32(14): 4063-4077, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37160764

RESUMEN

Parasite-mediated selection can rapidly drive up resistance levels in host populations, but fixation of resistance traits may be prevented by costs of resistance. Black bean aphids (Aphis fabae) benefit from increased resistance to parasitoids when carrying the defensive bacterial endosymbiont Hamiltonella defensa. However, due to fitness costs that come with symbiont infection, symbiont-conferred resistance may result in either a net benefit or a net cost to the aphid host, depending on parasitoid presence as well as on the general ecological context. Balancing selection may therefore explain why in natural aphid populations, H. defensa is often found at intermediate frequencies. Here we present a 2-year field study where we set out to look for signatures of balancing selection in natural aphid populations. We collected temporally well-resolved data on the prevalence of H. defensa in A. f. fabae and estimated the risk imposed by parasitoids using sentinel hosts. Despite a marked and consistent early-summer peak in parasitism risk, and significant changes in symbiont prevalence over time, we found just a weak correlation between parasitism risk and H. defensa frequency dynamics. H. defensa prevalence in the populations under study was, in fact, better explained by the number of heat days that previous aphid generations were exposed to. Our study grants an unprecedentedly well-resolved insight into the dynamics of endosymbiont and parasitoid communities of A. f. fabae populations, and it adds to a growing body of empirical evidence suggesting that not only parasitism risk, but rather multifarious selection is shaping H. defensa prevalence in the wild.


Asunto(s)
Áfidos , Avispas , Animales , Simbiosis , Estaciones del Año , Áfidos/microbiología , Enterobacteriaceae
4.
Mol Ecol ; 31(1): 70-85, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34601787

RESUMEN

Wild plant populations show extensive genetic subdivision and are far from the ideal of panmixia which permeates population genetic theory. Understanding the spatial and temporal scale of population structure is therefore fundamental for empirical population genetics - and of interest in itself, as it yields insights into the history and biology of a species. In this study we extend the genomic resources for the wild Mediterranean grass Brachypodium distachyon to investigate the scale of population structure and its underlying history at whole-genome resolution. A total of 86 accessions were sampled at local and regional scales in Italy and France, which closes a conspicuous gap in the collection for this model organism. The analysis of 196 accessions, spanning the Mediterranean from Spain to Iraq, suggests that the interplay of high selfing and seed dispersal rates has shaped genetic structure in B. distachyon. At the continental scale, the evolution in B. distachyon is characterized by the independent expansion of three lineages during the Upper Pleistocene. Today, these lineages may occur on the same meadow yet do not interbreed. At the regional scale, dispersal and selfing interact and maintain high genotypic diversity, thus challenging the textbook notion that selfing in finite populations implies reduced diversity. Our study extends the population genomic resources for B. distachyon and suggests that an important use of this wild plant model is to investigate how selfing and dispersal, two processes typically studied separately, interact in colonizing plant species.


Asunto(s)
Brachypodium , Variación Genética , Brachypodium/genética , Genética de Población , Genoma de Planta , Repeticiones de Microsatélite
5.
J Evol Biol ; 34(12): 1944-1953, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695269

RESUMEN

The dynamics of coevolution between hosts and parasites are influenced by their genetic interactions. Highly specific interactions, where the outcome of an infection depends on the precise combination of host and parasite genotypes (G × G interactions), have the potential to maintain genetic variation by inducing negative frequency-dependent selection. The importance of this effect also rests on whether such interactions are consistent across different environments or modified by environmental variation (G × G × E interaction). In the black bean aphid, Aphis fabae, resistance to its parasitoid Lysiphlebus fabarum is largely determined by the possession of a heritable bacterial endosymbiont, Hamiltonella defensa, with strong G × G interactions between H. defensa and L. fabarum. A key environmental factor in this system is the host plant on which the aphid feeds. Here, we exposed genetically identical aphids harbouring three different strains of H. defensa to three asexual genotypes of L. fabarum and measured parasitism success on three common host plants of A. fabae, namely Vicia faba, Chenopodium album and Beta vulgaris. As expected, we observed the pervasive G × G interaction between H. defensa and L. fabarum, but despite strong main effects of the host plants on average rates of parasitism, this interaction was not altered significantly by the host plant environment (no G × G × E interaction). The symbiont-conferred specificity of resistance is thus likely to mediate the coevolution of A. fabae and L. fabarum, even when played out across diverse host plants of the aphid.


Asunto(s)
Áfidos , Avispas , Animales , Áfidos/genética , Genotipo , Interacciones Huésped-Parásitos , Simbiosis , Avispas/genética
6.
New Phytol ; 227(6): 1736-1748, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31677277

RESUMEN

Transposable elements (TEs) are the main reason for the high plasticity of plant genomes, where they occur as communities of diverse evolutionary lineages. Because research has typically focused on single abundant families or summarized TEs at a coarse taxonomic level, our knowledge about how these lineages differ in their effects on genome evolution is still rudimentary. Here we investigate the community composition and dynamics of 32 long terminal repeat retrotransposon (LTR-RT) families in the 272-Mb genome of the Mediterranean grass Brachypodium distachyon. We find that much of the recent transpositional activity in the B. distachyon genome is due to centromeric Gypsy families and Copia elements belonging to the Angela lineage. With a half-life as low as 66 kyr, the latter are the most dynamic part of the genome and an important source of within-species polymorphisms. Second, GC-rich Gypsy elements of the Retand lineage are the most abundant TEs in the genome. Their presence explains > 20% of the genome-wide variation in GC content and is associated with higher methylation levels. Our study shows how individual TE lineages change the genetic and epigenetic constitution of the host beyond simple changes in genome size.


Asunto(s)
Brachypodium , Retroelementos , Brachypodium/genética , Evolución Molecular , Genoma de Planta/genética , Filogenia , Retroelementos/genética , Secuencias Repetidas Terminales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA