Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(17): 173903, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988397

RESUMEN

Frequency combs have become a prominent research area in optics. Of particular interest as integrated comb technology are chip-scale sources, such as semiconductor lasers and microresonators, which consist of resonators embedding a nonlinear medium either with or without population inversion. Such active and passive cavities were so far treated distinctly. Here we propose a formal unification by introducing a general equation that describes both types of cavities. The equation also captures the physics of a hybrid device-a semiconductor ring laser with an external optical drive-in which we show the existence of temporal solitons, previously identified only in microresonators, thanks to symmetry breaking and self-localization phenomena typical of spatially extended dissipative systems.

2.
Opt Lett ; 43(4): 867-870, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29444014

RESUMEN

We experimentally and numerically study the amplitude stability of an InAs/InGaAs quantum dot laser emitting simultaneously on ground states (GSs) and excited state (ESs) at center wavelengths of 1245 and 1168 nm, respectively. The stability is quantified by a spectrally resolved noise current analysis that is dependent on the laser injection current. We find a non-monotonic behavior of the amplitude noise which shows a reduction of up to 4 dB when the GS and ES emit simultaneously. Simulations based on a rate equation model confirm the reduction in noise and suggest the cascaded GS and ES carrier paths as the relevant underlying mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...