Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33431651

RESUMEN

Alzheimer's disease (AD), the most common cause of dementia and neurodegeneration in the elderly, is characterized by deterioration of memory and executive and motor functions. Neuropathologic hallmarks of AD include neurofibrillary tangles (NFTs), paired helical filaments, and amyloid plaques. Mutations in the microtubule-associated protein Tau, a major component of the NFTs, cause its hyperphosphorylation in AD. We have shown that signaling by the gaseous molecule hydrogen sulfide (H2S) is dysregulated during aging. H2S signals via a posttranslational modification termed sulfhydration/persulfidation, which participates in diverse cellular processes. Here we show that cystathionine γ-lyase (CSE), the biosynthetic enzyme for H2S, binds wild type Tau, which enhances its catalytic activity. By contrast, CSE fails to bind Tau P301L, a mutant that is present in the 3xTg-AD mouse model of AD. We further show that CSE is depleted in 3xTg-AD mice as well as in human AD brains, and that H2S prevents hyperphosphorylation of Tau by sulfhydrating its kinase, glycogen synthase kinase 3ß (GSK3ß). Finally, we demonstrate that sulfhydration is diminished in AD, while administering the H2S donor sodium GYY4137 (NaGYY) to 3xTg-AD mice ameliorates motor and cognitive deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Cistationina gamma-Liasa/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Sulfuro de Hidrógeno/farmacología , Morfolinas/farmacología , Fármacos Neuroprotectores/farmacología , Compuestos Organotiofosforados/farmacología , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Cistationina gamma-Liasa/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Mutación , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Fosforilación , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Placa Amiloide/prevención & control , Unión Proteica , Procesamiento Proteico-Postraduccional , Sulfatos/metabolismo , Proteínas tau/metabolismo
2.
Neuron ; 108(4): 659-675.e6, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113347

RESUMEN

Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons in male mice, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next use novel multiple feature selection tools in Fmr1-KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are enriched in parvocellular compared with magnocellular oxytocin neurons. Taken together, these results provide the first evidence that oxytocin-pathway-specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Neuronas/fisiología , Oxitocina/fisiología , Conducta Social , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Noqueados , Apego a Objetos , Oxitocina/genética
3.
Mol Cell Proteomics ; 13(1): 63-72, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24105792

RESUMEN

Nitric oxide (NO) mediates a substantial part of its physiologic functions via S-nitrosylation, however the cellular substrates for NO-mediated S-nitrosylation are largely unknown. Here we describe the S-nitrosoproteome using a high-density protein microarray chip containing 16,368 unique human proteins. We identified 834 potentially S-nitrosylated human proteins. Using a unique and highly specific labeling and affinity capture of S-nitrosylated proteins, 138 cysteine residues on 131 peptides in 95 proteins were determined, defining critical sites of NO's actions. Of these cysteine residues 113 are novel sites of S-nitrosylation. A consensus sequence motif from these 834 proteins for S-nitrosylation was identified, suggesting that the residues flanking the S-nitrosylated cysteine are likely to be the critical determinant of whether the cysteine is S-nitrosylated. We identify eight ubiquitin E3 ligases, RNF10, RNF11, RNF41, RNF141, RNF181, RNF208, WWP2, and UBE3A, whose activities are modulated by S-nitrosylation, providing a unique regulatory mechanism of the ubiquitin proteasome system. These results define a new and extensive set of proteins that are susceptible to NO regulation via S-nitrosylation. Similar approaches could be used to identify other post-translational modification proteomes.


Asunto(s)
Óxido Nítrico/metabolismo , Análisis por Matrices de Proteínas , Procesamiento Proteico-Postraduccional/genética , Proteoma , Humanos , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...