Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
NPJ Aging Mech Dis ; 7(1): 23, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462439

RESUMEN

The neural functions of adropin, a secreted peptide highly expressed in the brain, have not been investigated. In humans, adropin is highly expressed in astrocytes and peaks during critical postnatal periods of brain development. Gene enrichment analysis of transcripts correlating with adropin expression suggests processes relevant to aging-related neurodegenerative diseases that vary with age and dementia state, possibly indicating survivor bias. In people aged <40 y and 'old-old' (>75 y) diagnosed with dementia, adropin correlates positively with genes involved in mitochondrial processes. In the 'old-old' without dementia adropin expression correlates positively with morphogenesis and synapse function. Potent neurotrophic responses in primary cultured neurons are consistent with adropin supporting the development and function of neural networks. Adropin expression in the 'old-old' also correlates positively with protein markers of tau-related neuropathologies and inflammation, particularly in those without dementia. How variation in brain adropin expression affects neurological aging was investigated using old (18-month) C57BL/6J mice. In mice adropin is expressed in neurons, oligodendrocyte progenitor cells, oligodendrocytes, and microglia and shows correlative relationships with groups of genes involved in neurodegeneration and cellular metabolism. Increasing adropin expression using transgenesis improved spatial learning and memory, novel object recognition, resilience to exposure to new environments, and reduced mRNA markers of inflammation in old mice. Treatment with synthetic adropin peptide also reversed age-related declines in cognitive functions and affected expression of genes involved in morphogenesis and cellular metabolism. Collectively, these results establish a link between adropin expression and neural energy metabolism and indicate a potential therapy against neurological aging.

2.
Mol Metab ; 42: 101083, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32956848

RESUMEN

OBJECTIVE: Individuals born with intrauterine growth retardation (IUGR) are more prone to cardio-metabolic diseases as adults, and environmental changes during the perinatal period have been identified as potentially crucial factors. We have studied in a preclinical model early-onset molecular alterations present before the development of a clinical phenotype. METHODS: We used a preclinical mouse model of induced IUGR, in which we modulated the nutrition of the pups during the suckling period, to modify their susceptibility to cardio-metabolic diseases in adulthood. RESULTS: Mice born with IUGR that were overfed (IUGR-O) during lactation rapidly developed obesity, hepatic steatosis and insulin resistance, by three months of age, whereas those subjected to nutrition restriction during lactation (IUGR-R) remained permanently thin and highly sensitive to insulin. Mice born with IUGR and fed normally during lactation (IUGR-N) presented an intermediate phenotype and developed insulin resistance by 12 months of age. Molecular alterations to the insulin signaling pathway with an early onset were observed in the livers of adult IUGR-N mice, nine months before the appearance of insulin resistance. The implication of epigenetic changes was revealed by ChIP sequencing, with both posttranslational H3K4me3 histone modifications and microRNAs involved. CONCLUSIONS: These two changes lead to the coherent regulation of insulin signaling, with a decrease in Akt gene transcription associated with an increase in the translation of its inhibitor, Pten. Moreover, we found that the levels of the implicated miRNA19a-3p also decreased in the blood of young adult IUGR mice nine months before the appearance of insulin resistance, suggesting a possible role for this miRNA as an early circulating biomarker of metabolic fate of potential use for precision medicine.


Asunto(s)
Retardo del Crecimiento Fetal/genética , Resistencia a la Insulina/genética , MicroARNs/genética , Animales , Ácidos Nucleicos Libres de Células/genética , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/sangre , Retardo del Crecimiento Fetal/metabolismo , Histonas , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , MicroARNs/sangre , MicroARNs/metabolismo , Transducción de Señal
3.
J Biol Chem ; 295(40): 13753-13768, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32727846

RESUMEN

The micropeptide adropin encoded by the clock-controlled energy homeostasis-associated gene is implicated in the regulation of glucose metabolism. However, its links to rhythms of nutrient intake, energy balance, and metabolic control remain poorly defined. Using surveys of Gene Expression Omnibus data sets, we confirm that fasting suppresses liver adropin expression in lean C57BL/6J (B6) mice. However, circadian rhythm data are inconsistent. In lean mice, caloric restriction (CR) induces bouts of compulsive binge feeding separated by prolonged fasting intervals, increasing NAD-dependent deacetylase sirtuin-1 signaling important for glucose and lipid metabolism regulation. CR up-regulates adropin expression and induces rhythms correlating with cellular stress-response pathways. Furthermore, adropin expression correlates positively with phosphoenolpyruvate carboxokinase-1 (Pck1) expression, suggesting a link with gluconeogenesis. Our previous data suggest that adropin suppresses gluconeogenesis in hepatocytes. Liver-specific adropin knockout (LAdrKO) mice exhibit increased glucose excursions following pyruvate injections, indicating increased gluconeogenesis. Gluconeogenesis is also increased in primary cultured hepatocytes derived from LAdrKO mice. Analysis of circulating insulin levels and liver expression of fasting-responsive cAMP-dependent protein kinase A (PKA) signaling pathways also suggests enhanced responses in LAdrKO mice during a glucagon tolerance test (250 µg/kg intraperitoneally). Fasting-associated changes in PKA signaling are attenuated in transgenic mice constitutively expressing adropin and in fasting mice treated acutely with adropin peptide. In summary, hepatic adropin expression is regulated by nutrient- and clock-dependent extrahepatic signals. CR induces pronounced postprandial peaks in hepatic adropin expression. Rhythms of hepatic adropin expression appear to link energy balance and cellular stress to the intracellular signal transduction pathways that drive the liver fasting response.


Asunto(s)
Restricción Calórica , Ayuno , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Hígado/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Gluconeogénesis/genética , Hepatocitos/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/genética , Hígado/citología , Ratones , Ratones Noqueados , Fosfoenolpiruvato Carboxiquinasa (GTP)/biosíntesis , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Transducción de Señal/genética
4.
Obesity (Silver Spring) ; 26(12): 1849-1855, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30426710

RESUMEN

OBJECTIVE: Activation of hypothalamic agouti-related peptide expressing (AgRP)+ve neurons during energy deficit is a negative valence signal, rapidly activating food-seeking behaviors. This study examined the roles of melanocortin-3 receptors (MC3Rs) coexpressed in a subpopulation of AgRP+ve neurons. METHODS: AgRP-MC3R mice expressing MC3Rs selectively in AgRP+ve neurons were generated by crossing AgRP-IRES-Cre mice with LoxTBMc3r mice containing a "loxP-STOP-loxP" sequence in the 5' untranslated region. Body weight, body composition, and feeding behavior were assessed during ad libitum and time-restricted feeding conditions. RESULTS: In females, food intake of AgRP-IRES-Cre+ve (n = 7) or AgRP-IRES-Cre-ve (n = 9) mice was not significantly different; these mice were therefore pooled to form the "control" group. Female AgRP-MC3R mice exhibited lower food intake (25.4 ± 2.4 kJ/12 h; n = 6) compared with controls (35.3 ± 1.8 kJ/12 h; n = 16) and LoxTBMc3r mice (32.1 ± 2.1 kJ/12 h; n = 9) in the active phase during the dark period. Food intake during the rest phase (lights on) when mice consume less food (9-10 kJ) was normal between genotypes. Body weight and composition of AgRP-MC3R and LoxTBMc3r mice were similar, suggesting compensatory mechanisms for reduced calorie intake. Remarkably, AgRP-MC3R mice continued to consume less food during refeeding after fasting and time-restricted feeding. CONCLUSIONS: MC3Rs expressed on AgRP+ve neurons appear to exert a strong inhibitory signal on hypothalamic networks governing feeding behavior.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Conducta Alimentaria/fisiología , Neuronas/metabolismo , Receptor de Melanocortina Tipo 3/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Transgénicos
5.
Am J Physiol Endocrinol Metab ; 315(3): E357-E366, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29812984

RESUMEN

Intraperitoneal administration of the melanocortin agonist melanotan II (MTII) to mice causes a profound, transient hypometabolism/hypothermia. It is preserved in mice lacking any one of melanocortin receptors 1, 3, 4, or 5, suggesting a mechanism independent of the canonical melanocortin receptors. Here we show that MTII-induced hypothermia was abolished in KitW-sh/W-sh mice, which lack mast cells, demonstrating that mast cells are required. MRGPRB2 is a receptor that detects many cationic molecules and activates mast cells in an antigen-independent manner. In vitro, MTII stimulated mast cells by both MRGPRB2-dependent and -independent mechanisms, and MTII-induced hypothermia was intact in MRGPRB2-null mice. Confirming that MTII activated mast cells, MTII treatment increased plasma histamine levels in both wild-type and MRGPRB2-null, but not in KitW-sh/W-sh, mice. The released histamine produced hypothermia via histamine H1 receptors because either a selective antagonist, pyrilamine, or ablation of H1 receptors greatly diminished the hypothermia. Other drugs, including compound 48/80, a commonly used mast cell activator, also produced hypothermia by both mast cell-dependent and -independent mechanisms. These results suggest that mast cell activation should be considered when investigating the mechanism of drug-induced hypothermia in mice.


Asunto(s)
Agonistas de los Receptores Histamínicos/farmacología , Hipotermia/inducido químicamente , Mastocitos/efectos de los fármacos , Péptidos Cíclicos/farmacología , alfa-MSH/análogos & derivados , Animales , Liberación de Histamina/efectos de los fármacos , Liberación de Histamina/genética , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , alfa-MSH/farmacología
6.
Mol Metab ; 8: 51-64, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29331507

RESUMEN

OBJECTIVE: Identify determinants of plasma adropin concentrations, a secreted peptide translated from the Energy Homeostasis Associated (ENHO) gene linked to metabolic control and vascular function. METHODS: Associations between plasma adropin concentrations, demographics (sex, age, BMI) and circulating biomarkers of lipid and glucose metabolism were assessed in plasma obtained after an overnight fast in humans. The regulation of adropin expression was then assessed in silico, in cultured human cells, and in animal models. RESULTS: In humans, plasma adropin concentrations are inversely related to atherogenic LDL-cholesterol (LDL-C) levels in men (n = 349), but not in women (n = 401). Analysis of hepatic Enho expression in male mice suggests control by the biological clock. Expression is rhythmic, peaking during maximal food consumption in the dark correlating with transcriptional activation by RORα/γ. The nadir in the light phase coincides with the rest phase and repression by Rev-erb. Plasma adropin concentrations in nonhuman primates (rhesus monkeys) also exhibit peaks coinciding with feeding times (07:00 h, 15:00 h). The ROR inverse agonists SR1001 and the 7-oxygenated sterols 7-ß-hydroxysterol and 7-ketocholesterol, or the Rev-erb agonist SR9009, suppress ENHO expression in cultured human HepG2 cells. Consumption of high-cholesterol diets suppress expression of the adropin transcript in mouse liver. However, adropin over expression does not prevent hypercholesterolemia resulting from a high cholesterol diet and/or LDL receptor mutations. CONCLUSIONS: In humans, associations between plasma adropin concentrations and LDL-C suggest a link with hepatic lipid metabolism. Mouse studies suggest that the relationship between adropin and cholesterol metabolism is unidirectional, and predominantly involves suppression of adropin expression by cholesterol and 7-oxygenated sterols. Sensing of fatty acids, cholesterol and oxysterols by the RORα/γ ligand-binding domain suggests a plausible functional link between adropin expression and cellular lipid metabolism. Furthermore, the nuclear receptors RORα/γ and Rev-erb may couple adropin synthesis with circadian rhythms in carbohydrate and lipid metabolism.


Asunto(s)
LDL-Colesterol/sangre , Relojes Circadianos , Homeostasis , Péptidos/sangre , Proteínas/metabolismo , Adulto , Anciano , Animales , Proteínas Sanguíneas , Células Cultivadas , Femenino , Glucosa/metabolismo , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intercelular , Hígado/metabolismo , Macaca mulatta , Masculino , Ratones , Persona de Mediana Edad , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas/genética
7.
Front Neurosci ; 11: 308, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611581

RESUMEN

Endozepines are endogenous ligands for the benzodiazepine receptors and also target a still unidentified GPCR. The endozepine octadecaneuropeptide (ODN), an endoproteolytic processing product of the diazepam-binding inhibitor (DBI) was recently shown to be involved in food intake control as an anorexigenic factor through ODN-GPCR signaling and mobilization of the melanocortinergic signaling pathway. Within the hypothalamus, the DBI gene is mainly expressed by non-neuronal cells such as ependymocytes, tanycytes, and protoplasmic astrocytes, at levels depending on the nutritional status. Administration of ODN C-terminal octapeptide (OP) in the arcuate nucleus strongly reduces food intake. Up to now, the relevance of extrahypothalamic targets for endozepine signaling-mediated anorexia has been largely ignored. We focused our study on the dorsal vagal complex located in the caudal brainstem. This structure is strongly involved in the homeostatic control of food intake and comprises structural similarities with the hypothalamus. In particular, a circumventricular organ, the area postrema (AP) and a tanycyte-like cells forming barrier between the AP and the adjacent nucleus tractus solitarius (NTS) are present. We show here that DBI is highly expressed by ependymocytes lining the fourth ventricle, tanycytes-like cells, as well as by proteoplasmic astrocytes located in the vicinity of AP/NTS interface. ODN staining observed at the electron microscopic level reveals that ODN-expressing tanycyte-like cells and protoplasmic astrocytes are sometimes found in close apposition to neuronal elements such as dendritic profiles or axon terminals. Intracerebroventricular injection of ODN or OP in the fourth ventricle triggers c-Fos activation in the dorsal vagal complex and strongly reduces food intake. We also show that, similarly to leptin, ODN inhibits the swallowing reflex when microinjected into the swallowing pattern generator located in the NTS. In conclusion, we hypothesized that ODN expressing cells located at the AP/NTS interface could release ODN and modify excitability of NTS neurocircuitries involved in food intake control.

8.
Front Neurosci ; 11: 128, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28360832

RESUMEN

Melanocortin neurons conserve body mass in hyper- or hypo-caloric conditions by conveying signals from nutrient sensors into areas of the brain governing appetite and metabolism. In mice, melanocortin-3 receptor (MC3R) deletion alters nutrient partitioning independently of hyperphagia, promoting accumulation of fat over muscle mass. Enhanced rhythms in insulin and insulin-responsive metabolic genes during hypocaloric feeding suggest partial insulin resistance and enhanced lipogenesis. However, exactly where and how MC3Rs affect metabolic control to alter nutrient partitioning is not known. The behavioral phenotypes exhibited by MC3R-deficient mice suggest a contextual role in appetite control. The impact of MC3R-deficiency on feeding behavior when food is freely available is minor. However, homeostatic responses to hypocaloric conditioning involving increased expression of appetite-stimulating (orexigenic) neuropeptides, binge-feeding, food anticipatory activity (FAA), entrainment to nutrient availability and enhanced feeding-related motivational responses are compromised with MC3R-deficiency. Rescuing Mc3r transcription in hypothalamic and limbic neurons improves appetitive responses during hypocaloric conditioning while having minor effects on nutrient partitioning, suggesting orexigenic functions. Rescuing hypothalamic MC3Rs also restores responses of fasting-responsive hypothalamic orexigenic neurons in hypocaloric conditions, suggesting actions that sensitize fasting-responsive neurons to signals from nutrient sensors. MC3R signaling in ventromedial hypothalamic SF1(+ve) neurons improves metabolic control, but does not restore appetitive responses or nutrient partitioning. In summary, desensitization of fasting-responsive orexigenic neurons may underlie attenuated appetitive responses of MC3R-deficient mice in hypocaloric situations. Further studies are needed to identify the specific location(s) of MC3Rs controlling appetitive responses and partitioning of nutrients between fat and lean tissues.

9.
Sci Rep ; 7: 44444, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28294152

RESUMEN

Melanocortin-3 receptors (MC3R) have a contextual role in appetite control that is amplified with hypocaloric conditioning. C57BL/6J (B6) mice subjected to hypocaloric feeding schedules (HFS) exhibit compulsive behavioral responses involving food anticipatory activity (FAA) and caloric loading following food access. These homeostatic responses to calorie-poor environs are attenuated in B6 mice in which Mc3r transcription is suppressed by a lox-stop-lox sequence in the 5'UTR (Mc3rTB/TB). Here, we report that optimization of caloric loading in B6 mice subject to HFS, characterized by increased meal size and duration, is not observed in Mc3rTB/TB mice. Analysis of hypothalamic and neuroendocrine responses to HFS throughout the light-dark cycle suggests uncoupling of hypothalamic responses involving appetite-stimulating fasting-responsive hypothalamic neurons expressing agouti-related peptide (AgRP) and neuropeptide Y (Npy). Rescuing Mc3rs expression in Nkx2.1(+ve) neurons is sufficient to restore normal hypothalamic responses to negative energy balance. In addition, Mc3rs expressed in Nkx2.1(+ve) neurons are also sufficient to restore FAA and caloric loading of B6 mice subjected to HFS. In summary, MC3Rs expressed in Nkx2.1(+ve) neurons are sufficient to coordinate hypothalamic response and expression of compulsive behavioral responses involving meal anticipation and consumption of large meals during situations of prolonged negative energy balance.


Asunto(s)
Proteína Relacionada con Agouti/genética , Metabolismo Energético/genética , Neuropéptido Y/genética , Receptor de Melanocortina Tipo 3/genética , Animales , Apetito/genética , Ingestión de Energía/genética , Homeostasis , Hipotálamo/metabolismo , Ratones , Neuronas/metabolismo , Fotoperiodo , Factor Nuclear Tiroideo 1/genética
10.
Mol Metab ; 5(7): 566-579, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27408780

RESUMEN

OBJECTIVE: Appetitive responses to weight loss are mediated by a nutrient-sensing neural network comprised of melanocortin neurons. The role of neural melanocortin-3 receptors (MC3R) in mediating these responses is enigmatic. Mc3r knockout mice exhibit a paradoxical phenotype of obesity and reduced feeding-related behaviors in situations of nutrient scarcity. Here we examined whether MC3Rs expressed in mesolimbic neurons regulate feeding-related motivational responses. METHODS: Interactions between Mc3r genotype, cognitive function and energy balance on food self-administration were assessed using operant conditioning with fixed- and progressive ratio (FR1/PR1) settings. Inhibition of Mc3r transcription by a loxP-flanked transcriptional blocker (TB) in C57BL/6JN mice (Mc3r (TB/TB) ) was reversed in mesolimbic neurons using DAT-Cre (DAT-MC3R). RESULTS: Caloric restriction (CR) caused 10-15% weight loss and increased motivation to acquire food rewards during training sessions. c-Fos-expression in the nucleus accumbens was increased 1 h following food presentation. While exhibiting weight loss, total food self-administration, enhanced motivation to self-administer food rewards in training sessions held during CR and c-Fos-activation in the nucleus accumbens following re-feeding were all markedly attenuated in Mc3r (TB/TB) mice. In contrast, cognitive abilities were normal in Mc3r (TB/TB) mice. Total food self-administration during FR1 sessions was not rescued in DAT-MC3R mice, however enhanced motivational responses to self-administer food rewards in PR1 conditions were restored. The nutrient-partitioning phenotype observed with Mc3r-deficiency was not rescued in DAT-MC3R mice. CONCLUSIONS: Mesolimbic MC3Rs mediate enhanced motivational responses during CR. However, they are insufficient to restore normal caloric loading when food is presented during CR and do not affect metabolic conditions altering nutrient partitioning.

12.
Front Neuroendocrinol ; 38: 50-64, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25703789

RESUMEN

The circadian timing system orchestrates daily variations in physiology and behavior through coordination of multioscillatory cell networks that are highly plastic in responding to environmental changes. Over the last decade, it has become clear that this plasticity involves structural changes and that the changes may be observed not only in central brain regions where the master clock cells reside but also in clock-controlled structures. This review considers experimental data in invertebrate and vertebrate model systems, mainly flies and mammals, illustrating various forms of structural circadian plasticity from cellular to circuit-based levels. It highlights the importance of these plastic events in the functional adaptation of the clock to the changing environment.


Asunto(s)
Adaptación Fisiológica/fisiología , Relojes Circadianos/fisiología , Plasticidad Neuronal/fisiología , Núcleo Supraquiasmático/metabolismo , Animales , Ritmo Circadiano/fisiología , Humanos
13.
Endocrinology ; 155(12): 4843-55, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25211592

RESUMEN

The stomach hormone ghrelin and hypothalamic melanocortin neurons belong to a gut-brain circuit controlling appetite and metabolic homeostasis. Mice lacking melanocortin-3 receptor (Mc3rKO) or growth hormone secretagogue receptor (GhsrKO) genes exhibit attenuated food anticipatory activity (FAA), a rise in locomotor activity anticipating mealtime, suggesting common circuitry regulating anticipatory responses to nutrient loading. To investigate the interaction between Ghsrs and Mc3rs, we compared food anticipatory responses in GhsrKO, Mc3rKO, and double Ghsr;Mc3r knockout (DKO) mice subjected to a hypocaloric restricted feeding (RF) protocol in constant dark or 12-hour light, 12-hour dark settings. DKO are viable, exhibiting no overt behavioral or metabolic phenotypes in ad libitum or fasting conditions. FAA was initially attenuated in all mutant strains in constant darkness. However, GhsrKO eventually exhibited a robust food anticipatory response, suggesting compensation. Mc3rKO and DKO did not compensate, indicating a continued requirement for Mc3rs in maintaining the expression of FAA in situations of RF. Abnormal regulation of hypothalamic agouti-related peptide/neuropeptide Y (AgRP/Npy) neurons previously observed during fasting may contribute to attenuated FAA in Mc3rKO. AgRP and Npy expression measured 1 hour before food presentation correlated positively with FAA. Absence of Mc3rs (but not Ghsrs) was associated with lower AgRP/Npy expression, suggesting attenuated responses to signals of negative energy balance. These observations support the importance of Mc3rs as modulators of anticipatory responses to feeding, with mice able to compensate for loss of Ghsrs. The behavioral deficits of Mc3rKO displayed during RF may be partially explained by reduced hunger sensations owing to abnormal regulation of orexigenic AgRP/Npy neurons.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Apetito/fisiología , Actividad Motora/fisiología , Receptor de Melanocortina Tipo 3/metabolismo , Receptores de Ghrelina/metabolismo , Animales , Composición Corporal , Oscuridad , Metabolismo Energético , Privación de Alimentos , Genotipo , Homeostasis , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Cell Metab ; 20(2): 333-45, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-24981835

RESUMEN

The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r)-mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia that is preserved in mice lacking any one of Mc1r, Mc3r, Mc4r, or Mc5r. Three other melanocortin agonists also caused hypothermia, which is actively achieved via seeking a cool environment, vasodilation, and inhibition of brown adipose tissue thermogenesis. These results suggest that the hypometabolic/hypothermic effect of MTII is not due to a failure of thermoregulation. The hypometabolism/hypothermia was prevented by dopamine antagonists, and MTII selectively activated arcuate nucleus dopaminergic neurons, suggesting that these neurons may contribute to the hypometabolism/hypothermia. We propose that the hypometabolism/hypothermia is a regulated response, potentially beneficial during extreme physiologic stress.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Receptores de Melanocortina/agonistas , alfa-MSH/análogos & derivados , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Antagonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Melanocortina Tipo 1/agonistas , Receptor de Melanocortina Tipo 1/genética , Receptor de Melanocortina Tipo 1/metabolismo , Receptor de Melanocortina Tipo 3/agonistas , Receptor de Melanocortina Tipo 3/genética , Receptor de Melanocortina Tipo 3/metabolismo , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , alfa-MSH/farmacología
15.
Biochim Biophys Acta ; 1842(3): 482-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23680515

RESUMEN

Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Receptor de Melanocortina Tipo 3/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Animales , Peso Corporal/genética , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Receptor de Melanocortina Tipo 3/genética , Receptor de Melanocortina Tipo 4/genética
16.
Glia ; 61(7): 1172-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23640807

RESUMEN

Synchronization of circadian rhythms to the 24-h light/dark (L/D) cycle is associated with daily rearrangements of the neuronal-glial network of the suprachiasmatic nucleus of the hypothalamus (SCN), the central master clock orchestrating biological functions in mammals. These anatomical plastic events involve neurons synthesizing vasoactive intestinal peptide (VIP), known as major integrators of photic signals in the retinorecipient region of the SCN. Using an analog-sensitive kinase allele murine model (TrkB(F616A) ), we presently show that the pharmacological blockade of the tropomyosin-related kinase receptor type B (TrkB), the high-affinity receptor of brain-derived neurotrophic factor (BDNF), abolished day/night changes in the dendrite enwrapping of VIP neurons by astrocytic processes (glial coverage), used as an index of SCN plasticity on electron-microscopic sections. Therefore, the BDNF/TrkB signaling pathway exerts a permissive role on the ultrastructural rearrangements that occur in SCN under L/D alternance, an action that could be a critical determinant of the well-established role played by BDNF in the photic regulation of the SCN. In contrast, the extent of glial coverage of non-VIP neighboring dendrites was not different at daytime and nighttime in TrkB(F616A) mice submitted to TrkB inactivation or not receiving any pharmacological treatment. These data not only show that BDNF regulates SCN structural plasticity across the 24-h cycle but also reinforce the view that the daily changes in SCN architecture subserve the light synchronization process.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/ultraestructura , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Transducción de Señal/fisiología , Núcleo Supraquiasmático/citología , Alanina/genética , Análisis de Varianza , Animales , Factor Neurotrófico Derivado del Encéfalo/ultraestructura , Ritmo Circadiano/fisiología , Dendritas/metabolismo , Dendritas/ultraestructura , Masculino , Ratones , Ratones Transgénicos , Microscopía Inmunoelectrónica , Mutación/genética , Fenilalanina/genética , Receptor trkB/genética , Receptor trkB/ultraestructura , Transducción de Señal/genética , Péptido Intestinal Vasoactivo/metabolismo
17.
Prog Mol Biol Transl Sci ; 114: 109-46, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23317784

RESUMEN

Attenuated activity of the central nervous melanocortin system causes obesity and insulin resistance. Obese rodents treated with melanocortins exhibit improvements in obesity and metabolic homeostasis that are not mutually dependent, suggesting metabolic actions that are independent of weight changes. These responses are generally thought to involve G-protein-coupled receptors expressed in the brain. Melanocortin-4 receptors (MC4Rs) regulate satiety and autonomic nervous system and thyroid function. MC3Rs are expressed in hypothalamic and limbic regions involved in controlling ingestive behaviors and autonomic function. Mc3r-/- mice exhibit increased adiposity and an accelerated diet-induced obesity. While this phenotype is not dependent on hyperphagia, data on the regulation of food intake by MC3Rs are inconsistent. Recent investigations by our laboratory suggest a unique combination of behavioral and metabolic disorders in Mc3r-/- mice. MC3Rs are critical for the expression of the anticipatory response and metabolic homeostasis when food intake occurs outside the normal voluntary rhythms driven by photoperiod. Using a Cre-Lox strategy, we can now investigate MC3Rs expressed in different brain regions and organ systems in the periphery. While focusing on the functions of neural MC3Rs, early results suggest an additional layer of complexity with central and peripheral MC3Rs involved in the defense of body weight.


Asunto(s)
Metabolismo Energético , Homeostasis , Receptor de Melanocortina Tipo 3/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Humanos , Leptina/metabolismo , Transducción de Señal
18.
PLoS One ; 6(10): e26134, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22022538

RESUMEN

Physiological regulations of energy balance and body weight imply highly adaptive mechanisms which match caloric intake to caloric expenditure. In the central nervous system, the regulation of appetite relies on complex neurocircuitry which disturbance may alter energy balance and result in anorexia or obesity. Deoxynivalenol (DON), a trichothecene, is one of the most abundant mycotoxins found on contaminated cereals and its stability during processing and cooking explains its widespread presence in human food. DON has been implicated in acute and chronic illnesses in both humans and farm animals including weight loss. Here, we provide the first demonstration that DON reduced feeding behavior and modified satiation and satiety by interfering with central neuronal networks dedicated to food intake regulation. Moreover, our results strongly suggest that during intoxication, DON reaches the brain where it modifies anorexigenic balance. In view of the widespread human exposure to DON, the present results may lead to reconsider the potential consequences of chronic DON consumption on human eating disorders.


Asunto(s)
Anorexia/fisiopatología , Conducta Alimentaria/efectos de los fármacos , Contaminación de Alimentos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Tricotecenos/farmacología , Animales , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatología , Proteínas de Unión al Calcio/metabolismo , Vértebras Cervicales/efectos de los fármacos , Vértebras Cervicales/metabolismo , Vértebras Cervicales/cirugía , Proteínas de Unión al ADN/metabolismo , Oscuridad , Humanos , Inmunohistoquímica , Inyecciones Intraventriculares , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nucleobindinas , Fenotipo , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Tricotecenos/administración & dosificación , Vagotomía
19.
Biol Aujourdhui ; 205(3): 179-97, 2011.
Artículo en Francés | MEDLINE | ID: mdl-21982406

RESUMEN

Accumulating evidence renders the dogma obsolete according to which the structural organization of the brain would remain essentially stable in adulthood, changing only in response to a need for compensatory processes during increasing age and degeneration. It has indeed become clear from investigations on various models that the adult nervous system can adapt to physiological demands by altering reversibly its synaptic circuits. This potential for structural and functional modifications results not only from the plastic properties of neurons but also from the inherent capacity of the glial cellular components to undergo remodeling as well. This is currently known for astrocytes, the major glial cells in brain which are well-recognized as dynamic partners in the mechanisms of synaptic transmission, and for the tanycytes and pituicytes which contribute to the regulation of neurosecretory processes in neurohemal regions of the hypothalamus. Studies on the neuroendocrine hypothalamus, whose role is central in homeostatic regulations, have gained good insights into the spectacular neuronal-glial rearrangements that may subserve functional plasticity in the adult brain. Following pioneering works on the morphological reorganizations taking place in the hypothalamo-neurohypophyseal system under certain physiological conditions such as dehydration and lactation, studies on the gonadotropic system that orchestrates reproductive functions have re-emphasized the dynamic interplay between neurons and glia in brain structural plasticity processes. This review summarizes the major contributions provided by these researches in the field and also addresses the question of the morphological rearrangements that occur on a 24-h basis in the central component of the circadian clock responsible for the temporal aspects of endocrine regulations. Taken together, the reviewed data highlight the close cooperation between neurons and glia in developing strategies for functional adaptation of the brain to the changing conditions of the internal and external environment.


Asunto(s)
Sistema Nervioso Central/anatomía & histología , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Plasticidad Neuronal , Adaptación Fisiológica , Animales , Astrocitos/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Ritmo Circadiano/fisiología , Ciclo Estral/fisiología , Femenino , Humanos , Sistema Hipotálamo-Hipofisario/fisiología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/ultraestructura , Luz , Ciclo Menstrual/fisiología , Modelos Neurológicos , Molécula L1 de Adhesión de Célula Nerviosa/fisiología , Neuronas/fisiología , Ovario/metabolismo , Estaciones del Año , Ácidos Siálicos/fisiología , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/efectos de la radiación , Sinapsis/ultraestructura
20.
Toxicol Sci ; 124(1): 179-91, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21873375

RESUMEN

Deoxynivalenol (DON), one of the most abundant trichothecenes found on cereals, has been implicated in mycotoxicoses in both humans and farm animals. Low-dose toxicity is characterized by reduced weight gain, diminished nutritional efficiency, and immunologic effects. The levels and patterns of human food commodity contamination justify that DON consumption constitutes a public health issue. DON stability during processing and cooking explains its large presence in human food. We characterized here DON intoxication by showing that the toxin concomitantly affects feeding behavior, body temperature, and locomotor activity after both per os and central administration. Using c-Fos expression mapping, we identified the neuronal structures activated in response to DON and observed that the pattern of neuronal populations activated by the toxin resembled those induced by inflammatory signals. By real-time PCR, we report the first evidences for a DON-induced central inflammation, attested by the strong upregulation of interleukin-1ß, interleukin-6, tumor necrosis factor-α, cyclooxygenase-2, and microsomal prostaglandin synthase-1 (mPGES-1) messenger RNA. However, silencing prostaglandins E2 signaling pathways using mPGES-1 knockout mice, which are resistant to cytokine-induced sickness behavior, did not modify the responses to the toxin. These results reveal that, despite strong similarities, behavioral changes observed after DON intoxication differ from classical sickness behavior evoked by inflammatory cytokines.


Asunto(s)
Encéfalo/efectos de los fármacos , Citocinas/genética , Dinoprostona/fisiología , Contaminación de Alimentos , Conducta de Enfermedad/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Anorexia/inducido químicamente , Anorexia/genética , Anorexia/inmunología , Temperatura Corporal/efectos de los fármacos , Encéfalo/inmunología , Citocinas/inmunología , Dinoprostona/biosíntesis , Expresión Génica/efectos de los fármacos , Inmunohistoquímica , Oxidorreductasas Intramoleculares/genética , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Prostaglandina-E Sintasas , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA