RESUMEN
Biobased furans have emerged as chemical building blocks for the development of materials because of their diverse scaffolds and as they can be directly prepared from sugars. However, selective, efficient, and cost-effective scalable conversion of biobased furans remains elusive. Here, we report a robust transaminase (TA) from Shimia marina (SMTA) that enables the scalable amination of biobased furanaldehydes with high activity and broad substrate specificity. Crystallographic and mutagenesis analyses provide mechanistic insights and a structural basis for understanding SMTA, which enables a higher substrate conversion. The enzymatic cascade process established in this study allows one-pot synthesis of 2,5-bis(aminomethyl)furan (BAMF) and 5-(aminomethyl)furan-2-carboxylic acid from 5-hydroxymethylfurfural. The biosynthesis of various furfurylamines, including a one-pot cascade reaction for BAMF generation using whole cells, demonstrates their practical application in the pharmaceutical and polymer industries.
Asunto(s)
Biocatálisis , Furanos , Transaminasas , Furanos/química , Furanos/metabolismo , Transaminasas/metabolismo , Transaminasas/genética , Transaminasas/química , Especificidad por Sustrato , Furaldehído/análogos & derivados , Furaldehído/metabolismo , Furaldehído/química , Aminación , Aminas/química , Aminas/metabolismo , Cristalografía por Rayos XRESUMEN
The promoter is an essential component of an expression system since it regulates the transcriptional beginning of related genes. The optimal expression level can be achieved by employing a promoter engineering approach. Typically, creating a library of T7 promoters allows for titratable protein expression. In the process of making ß-amino acid (sitagliptin intermediate) from ß-keto ester, esterase from Pseudomonas stutzeri (Est PS) is used to convert the ß-keto ester to ß-keto acid. Subsequently, transaminase from Ilumatobacter coccineus (TAIC) transforms the ß-keto acid to its corresponding ß-amino acid. Here, we describe the optimization of the expression levels of Est PS for the maximum production of sitagliptin intermediate. The different promoter strengths for Est PS were built into the T7 promoters of the pET15b vector. With the help of these new co-expressing entire cells, the expressed enzyme ratio for each enzyme was determined. As the strength of the promoter of Est PS decreases, the expression level also decreases (from 100% to 10%). Conversely, the TAIC expression level is increased. This developed system produced a higher sitagliptin intermediate than enzymes' unoptimized expression level.
Asunto(s)
Regiones Promotoras Genéticas , Fosfato de Sitagliptina , Esterasas/genética , Esterasas/metabolismo , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Transaminasas/genética , Transaminasas/metabolismo , Vectores Genéticos/genética , Expresión Génica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
The U.S. Department of Energy has listed levulinic acid (LA) as one of the top 12 compounds derived from biomass. LA has gained much attention owing to its conversion into enantiopure 4-aminopentanoic acid through an amination reaction. Herein, we developed a coupled-enzyme recyclable cascade employing two transaminases (TAs) for the synthesis of (S)-4-aminopentanoic acid. TAs were first utilized to convert LA into (S)-4-aminopentanoic acid using (S)-α-Methylbenzylamine [(S)-α-MBA] as an amino donor. The deaminated (S)-α-MBA i.e., acetophenone was recycled back using a second TAs while using isopropyl amine (IPA) amino donor to generate easily removable acetone. Enzymatic reactions were carried out using different systems, with conversions ranging from 30% to 80%. Furthermore, the hybrid nanoflowers (HNF) of the fusion protein were constructed which afforded complete biocatalytic conversion of LA to the desired (S)-4-aminopentanoic acid. The created HNF demonstrated storage stability for over a month and can be reused for up to 7 sequential cycles. A preparative scale reaction (100 mL) achieved the complete conversion with an isolated yield of 62%. Furthermore, the applicability of this recycling system was tested with different ß-keto ester substrates, wherein 18%-48% of corresponding ß-amino acids were synthesized. Finally, this recycling system was applied for the biosynthesis of pharmaceutical important drug sitagliptin intermediate ((R)-3-amino-4-(2,4,5-triflurophenyl) butanoic acid) with an excellent conversion 82%.
RESUMEN
In this study of creating new molecules from clinical trial agents, an approach of Combretastatin structural modulation with the installation of NP-privileged motifs was considered, and a series of trimethoxyphenyl-2-aminoimidazole with functionalized quinolines and isoquinolines was investigated. An exciting method of quinoline C3-H iodination coupled with imidazopyridine-C3-H arylation and hydrazine-mediated fused-ring cleavage enabled synthesizing a class of compounds with two specific unsymmetric aryl substitutions. Interestingly, three compounds (6, 11, and 13) strongly inhibited HeLa cell proliferation with a half-maximal inhibitory concentration (10-46 nM). Among the compounds, compound 6 (QTMP) showed stronger antiproliferative ability than CA-4 (a clinical trial agent) in various cancer cell lines, including cervical, lung, breast, highly metastatic breast, and melanoma cells. QTMP inhibited the assembly of purified tubulin, depolymerized microtubules of A549 lung carcinoma cells, produced defective spindles, and arrested the cells in the G2/M phase. Further, QTMP binds to the colchicine site in tubulin with a dissociation constant of 5.0 ± 0.6 µM. QTMP displayed higher aqueous stability than CA-4 at 37 °C. Further, in silico analysis of QTMP indicated excellent drug-like properties, including good aqueous solubility, balanced hydrophilicity-lipophilicity, and high GI-absorption ability. The results together suggest that QTMP has anticancer potential.
Asunto(s)
Antineoplásicos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Moduladores de Tubulina/farmacología , Células HeLa , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular , Ensayos de Selección de Medicamentos AntitumoralesRESUMEN
A continuous flow methodology for the facile and high-yielding synthesis of the porphyrin-based self-assembled organic cage, P12 L24 is reported, along with the serendipitous discovery of a kinetic product, P9 L18 cage, which has been characterized by MALDI-TOF MS, NMR, and AFM analysis. A theoretical study suggests a tricapped trigonal prismatic geometry for P9 L18 . Unlike P12 L24 , P9 L18 is unstable and readily decomposes into monomers and small oligomers. While the batch synthesis produces only the thermodynamic product P12 L24 , the continuous flow process generates not only the thermodynamic product but also kinetic products, such as P9 L18 , illustrating the advantages of the continuous flow process for the synthesis of self-assembled cages and the exploration of new non-equilibrium assemblies.
RESUMEN
Non-canonical amino acids (ncAAs) have been utilized as an invaluable tool for modulating the active site of the enzymes, probing the complex enzyme mechanisms, improving catalytic activity, and designing new to nature enzymes. Here, we report site-specific incorporation of p-benzoyl phenylalanine (pBpA) to engineer (R)-amine transaminase previously created from d-amino acid aminotransferase scaffold. Replacement of the single Phe88 residue at the active site with pBpA exhibits a significant 15-fold and 8-fold enhancement in activity for 1-phenylpropan-1-amine and benzaldehyde, respectively. Reshaping of the enzyme's active site afforded an another variant F86A/F88pBpA, with 30% higher thermostability at 55°C without affecting parent enzyme activity. Moreover, various racemic amines were successfully resolved by transaminase variants into (S)-amines with excellent conversions (â¼50%) and enantiomeric excess (>99%) using pyruvate as an amino acceptor. Additionally, kinetic resolution of the 1-phenylpropan-1-amine was performed using benzaldehyde as an amino acceptor, which is cheaper than pyruvate. Our results highlight the utility of ncAAs for designing enzymes with enhanced functionality beyond the limit of 20 canonical amino acids.
RESUMEN
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Asunto(s)
Aminas , Aminoácidos , Biocatálisis , Enzimas/metabolismoRESUMEN
Herein, we report the development of a multi-enzyme cascade using transaminase (TA), esterase, aldehyde reductase (AHR), and formate dehydrogenase (FDH), using benzylamine as an amino donor to synthesize the industrially important compound sitagliptin intermediate. A panel of 16 TAs was screened using ethyl 3-oxo-4-(2,4,5-trifluorophenyl) butanoate as a substrate (1). Amongst these enzymes, TA from Roseomonas deserti (TARO) was found to be the most suitable, showing the highest activity towards benzylamine (â¼70%). The inhibitory effect of benzaldehyde was resolved by using AHR from Synechocystis sp. and FDH from Pseudomonas sp., which catalyzed the conversion of benzaldehyde to benzyl alcohol at the expense of NAD(P)H. Reaction parameters, such as pH, buffer system, and concentration of amino donor, were optimized. A single whole-cell system was developed for co-expressing TARO and esterase, and the promoter engineering strategy was adopted to control the expression level of each biocatalyst. The whole-cell reactions were performed with varying substrate concentrations (10-100 mM), resulting in excellent conversions (ranging from 72 to 91%) into the desired product. Finally, the applicability of this cascade was highlighted on Gram scale, indicating production of 70% of the sitagliptin intermediate with 61% isolated yield. The protocol reported herein may be considered an alternative to existing methods with respect to the use of cheaper amine donors as well as improved synthesis of (R) and (S) enantiomers with the use of non-chiral amino donors.
RESUMEN
Here, we report a bienzymatic cascade to produce ß-amino acids as an intermediate for the synthesis of the leading oral antidiabetic drug, sitagliptin. A whole-cell biotransformation using recombinant Escherichia coli coexpressing a esterase and transaminase were developed, wherein the desired expression level of each enzyme was achieved by promotor engineering. The small-scale reactions (30 ml) performed under optimized conditions at varying amounts of substrate (100-300 mM) resulted in excellent conversions of 82%-95% for the desired product. Finally, a kilogram-scale enzymatic reaction (250 mM substrate, 220 L) was carried out to produce ß-amino acid (229 mM). Sitagliptin phosphate was chemically synthesized from ß-amino acids with 82% yield and > 99% purity.