Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
PNAS Nexus ; 3(4): pgae063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560526

RESUMEN

Network structures underlie the dynamics of many complex phenomena, from gene regulation and foodwebs to power grids and social media. Yet, as they often cannot be observed directly, their connectivities must be inferred from observations of the dynamics to which they give rise. In this work, we present a powerful computational method to infer large network adjacency matrices from time series data using a neural network, in order to provide uncertainty quantification on the prediction in a manner that reflects both the degree to which the inference problem is underdetermined as well as the noise on the data. This is a feature that other approaches have hitherto been lacking. We demonstrate our method's capabilities by inferring line failure locations in the British power grid from its response to a power cut, providing probability densities on each edge and allowing the use of hypothesis testing to make meaningful probabilistic statements about the location of the cut. Our method is significantly more accurate than both Markov-chain Monte Carlo sampling and least squares regression on noisy data and when the problem is underdetermined, while naturally extending to the case of nonlinear dynamics, which we demonstrate by learning an entire cost matrix for a nonlinear model of economic activity in Greater London. Not having been specifically engineered for network inference, this method in fact represents a general parameter estimation scheme that is applicable to any high-dimensional parameter space.

2.
Proc Natl Acad Sci U S A ; 120(7): e2216415120, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36763529

RESUMEN

Computational models have become a powerful tool in the quantitative sciences to understand the behavior of complex systems that evolve in time. However, they often contain a potentially large number of free parameters whose values cannot be obtained from theory but need to be inferred from data. This is especially the case for models in the social sciences, economics, or computational epidemiology. Yet, many current parameter estimation methods are mathematically involved and computationally slow to run. In this paper, we present a computationally simple and fast method to retrieve accurate probability densities for model parameters using neural differential equations. We present a pipeline comprising multiagent models acting as forward solvers for systems of ordinary or stochastic differential equations and a neural network to then extract parameters from the data generated by the model. The two combined create a powerful tool that can quickly estimate densities on model parameters, even for very large systems. We demonstrate the method on synthetic time series data of the SIR model of the spread of infection and perform an in-depth analysis of the Harris-Wilson model of economic activity on a network, representing a nonconvex problem. For the latter, we apply our method both to synthetic data and to data of economic activity across Greater London. We find that our method calibrates the model orders of magnitude more accurately than a previous study of the same dataset using classical techniques, while running between 195 and 390 times faster.

3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372139

RESUMEN

We present a statistical finite element method for nonlinear, time-dependent phenomena, illustrated in the context of nonlinear internal waves (solitons). We take a Bayesian approach and leverage the finite element method to cast the statistical problem as a nonlinear Gaussian state-space model, updating the solution, in receipt of data, in a filtering framework. The method is applicable to problems across science and engineering for which finite element methods are appropriate. The Korteweg-de Vries equation for solitons is presented because it reflects the necessary complexity while being suitably familiar and succinct for pedagogical purposes. We present two algorithms to implement this method, based on the extended and ensemble Kalman filters, and demonstrate effectiveness with a simulation study and a case study with experimental data. The generality of our approach is demonstrated in SI Appendix, where we present examples from additional nonlinear, time-dependent partial differential equations (Burgers equation, Kuramoto-Sivashinsky equation).

4.
Nat Comput Sci ; 1(5): 313-320, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-38217216

RESUMEN

Mathematical modeling and simulation are moving from being powerful development and analysis tools towards having increased roles in operational monitoring, control and decision support, in which models of specific entities are continually updated in the form of a digital twin. However, current digital twins are largely the result of bespoke technical solutions that are difficult to scale. We discuss two exemplar applications that motivate challenges and opportunities for scaling digital twins, and that underscore potential barriers to wider adoption of this technology.

5.
Sci Total Environ ; 745: 140846, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32717598

RESUMEN

The increased use of the urban subsurface for competing purposes, such as anthropogenic infrastructures and geothermal energy applications, leads to an urgent need for large-scale sophisticated modelling approaches for coupled mass and heat transfer. However, such models are subject to large uncertainties in model parameters, the physical model itself and in available measured data, which is often rare. Thus, the robustness and reliability of the computer model and its outcomes largely depend on successful parameter estimation and model calibration, which are hampered by the computational burden of large-scale coupled models. To tackle this problem, we develop a novel Bayesian approach for parameter estimation, which allows us to account for different sources of uncertainty, is capable of dealing with sparse field data and makes optimal use of the output data from expensive numerical model runs. This is achieved by combining output data from different models that represent the same physical problem, but at different levels of fidelity, e.g. reflected by different spatial resolution. By applying this new approach to a 1D analytical heat transfer model and a large-scale semi-3D numerical model while using synthetic data, we show that the accuracy and precision of parameter estimation by this multi-fidelity framework by far exceeds the standard single-fidelity results. The consideration of different error terms in the Bayesian framework also allows assessment of the model bias and the discrepancy between the different fidelity levels. These are emulated by Gaussian Process models, which facilitate re-iteration of the parameter estimation without additional model runs.

6.
PLoS Comput Biol ; 14(3): e1005995, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29518076

RESUMEN

Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.


Asunto(s)
Quirópteros/fisiología , Ecolocación/fisiología , Monitoreo del Ambiente/métodos , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador , Algoritmos , Animales , Quirópteros/clasificación , Biología Computacional , Ecolocación/clasificación , Especies en Peligro de Extinción , Redes Neurales de la Computación , Zoología
7.
Theranostics ; 8(22): 6195-6209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613292

RESUMEN

Vascular immune-inflammatory responses play a crucial role in the progression and outcome of atherosclerosis. The ability to assess localized inflammation through detection of specific vascular inflammatory biomarkers would significantly improve cardiovascular risk assessment and management; however, no multi-parameter molecular imaging technologies have been established to date. Here, we report the targeted in vivo imaging of multiple vascular biomarkers using antibody-functionalized nanoparticles and surface-enhanced Raman scattering (SERS). Methods: A series of antibody-functionalized gold nanoprobes (BFNP) were designed containing unique Raman signals in order to detect intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin using SERS. Results: SERS and BFNP were utilized to detect, discriminate and quantify ICAM-1, VCAM-1 and P-selectin in vitro on human endothelial cells and ex vivo in human coronary arteries. Ultimately, non-invasive multiplex imaging of adhesion molecules in a humanized mouse model was demonstrated in vivo following intravenous injection of the nanoprobes. Conclusion: This study demonstrates that multiplexed SERS-based molecular imaging can indicate the status of vascular inflammation in vivo and gives promise for SERS as a clinical imaging technique for cardiovascular disease in the future.


Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/inmunología , Células Endoteliales de la Vena Umbilical Humana/química , Imagen Molecular/métodos , Espectrometría Raman/métodos , Animales , Femenino , Oro/química , Células Endoteliales de la Vena Umbilical Humana/inmunología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Imagen Molecular/instrumentación , Nanopartículas/química , Selectina-P/genética , Selectina-P/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
8.
Sci Rep ; 7: 46226, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387314

RESUMEN

With an aging patient population and increasing complexity in patient disease trajectories, physicians are often met with complex patient histories from which clinical decisions must be made. Due to the increasing rate of adverse events and hospitals facing financial penalties for readmission, there has never been a greater need to enforce evidence-led medical decision-making using available health care data. In the present work, we studied a cohort of 7,741 patients, of whom 4,080 were diagnosed with cancer, surgically treated at a University Hospital in the years 2004-2012. We have developed a methodology that allows disease trajectories of the cancer patients to be estimated from free text in electronic health records (EHRs). By using these disease trajectories, we predict 80% of patient events ahead in time. By control of confounders from 8326 quantified events, we identified 557 events that constitute high subsequent risks (risk > 20%), including six events for cancer and seven events for metastasis. We believe that the presented methodology and findings could be used to improve clinical decision support and personalize trajectories, thereby decreasing adverse events and optimizing cancer treatment.


Asunto(s)
Registros Electrónicos de Salud , Neoplasias/epidemiología , Factores de Confusión Epidemiológicos , Sistemas de Apoyo a Decisiones Clínicas , Progresión de la Enfermedad , Estado de Salud , Humanos , Morbilidad , Neoplasias/diagnóstico , Noruega
9.
Stat Comput ; 27(4): 1065-1082, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32226237

RESUMEN

In this paper, we present a formal quantification of uncertainty induced by numerical solutions of ordinary and partial differential equation models. Numerical solutions of differential equations contain inherent uncertainties due to the finite-dimensional approximation of an unknown and implicitly defined function. When statistically analysing models based on differential equations describing physical, or other naturally occurring, phenomena, it can be important to explicitly account for the uncertainty introduced by the numerical method. Doing so enables objective determination of this source of uncertainty, relative to other uncertainties, such as those caused by data contaminated with noise or model error induced by missing physical or inadequate descriptors. As ever larger scale mathematical models are being used in the sciences, often sacrificing complete resolution of the differential equation on the grids used, formally accounting for the uncertainty in the numerical method is becoming increasingly more important. This paper provides the formal means to incorporate this uncertainty in a statistical model and its subsequent analysis. We show that a wide variety of existing solvers can be randomised, inducing a probability measure over the solutions of such differential equations. These measures exhibit contraction to a Dirac measure around the true unknown solution, where the rates of convergence are consistent with the underlying deterministic numerical method. Furthermore, we employ the method of modified equations to demonstrate enhanced rates of convergence to stochastic perturbations of the original deterministic problem. Ordinary differential equations and elliptic partial differential equations are used to illustrate the approach to quantify uncertainty in both the statistical analysis of the forward and inverse problems.

10.
Neuroimage Clin ; 12: 372-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27595065

RESUMEN

Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged). However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature). In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes from early post-stroke structural brain imaging.


Asunto(s)
Encéfalo/patología , Aprendizaje Automático , Trastornos Motores/diagnóstico , Accidente Cerebrovascular/patología , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trastornos Motores/etiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen
11.
J R Soc Interface ; 13(121)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27558850

RESUMEN

Infectious diseases exert a large and in many contexts growing burden on human health, but violate most of the assumptions of classical epidemiological statistics and hence require a mathematically sophisticated approach. Viral shedding data are collected during human studies-either where volunteers are infected with a disease or where existing cases are recruited-in which the levels of live virus produced over time are measured. These have traditionally been difficult to analyse due to strong, complex correlations between parameters. Here, we show how a Bayesian approach to the inverse problem together with modern Markov chain Monte Carlo algorithms based on information geometry can overcome these difficulties and yield insights into the disease dynamics of two of the most prevalent human pathogens-influenza and norovirus-as well as Ebola virus disease.


Asunto(s)
Infecciones por Caliciviridae , Ebolavirus , Fiebre Hemorrágica Ebola , Virus de la Influenza A , Gripe Humana , Modelos Biológicos , Norovirus , Teorema de Bayes , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/transmisión , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/transmisión , Humanos , Gripe Humana/epidemiología , Gripe Humana/transmisión
12.
Nat Commun ; 7: 12111, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27435297

RESUMEN

Post-translational modifications are necessary for collagen precursor molecules (procollagens) to acquire final shape and function. However, the mechanism and contribution of collagen modifications that occur outside the endoplasmic reticulum and Golgi are not understood. We discovered that VIPAR, with its partner proteins, regulate sorting of lysyl hydroxylase 3 (LH3, also known as PLOD3) into newly identified post-Golgi collagen IV carriers and that VIPAR-dependent sorting is essential for modification of lysines in multiple collagen types. Identification of structural and functional collagen abnormalities in cells and tissues from patients and murine models of the autosomal recessive multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis syndrome caused by VIPAR and VPS33B deficiencies confirmed our findings. Thus, regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis and for the development and function of multiple organs and tissues.


Asunto(s)
Colágeno/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Animales , Artrogriposis/metabolismo , Artrogriposis/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Aparato de Golgi/ultraestructura , Células HEK293 , Humanos , Ratones , Fenotipo , Unión Proteica , Transporte de Proteínas , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Red trans-Golgi/metabolismo
13.
Biophys J ; 111(2): 333-348, 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27463136

RESUMEN

The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel models is publicly available.


Asunto(s)
Canales Iónicos/metabolismo , Modelos Biológicos , Teorema de Bayes , Cadenas de Markov , Método de Montecarlo
14.
Anal Chem ; 88(2): 1147-53, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26698880

RESUMEN

A significant advantage of using surface enhanced Raman scattering (SERS) for DNA detection is the capability to detect multiple analytes simultaneously within the one sample. However, as the analytes approach the metallic surface required for SERS, they become more concentrated and previous studies have suggested that different dye labels will have different affinities for the metal surface. Here, the interaction of single stranded DNA labeled with either fluorescein (FAM) or tetramethylrhodamine (TAMRA) with a metal surface, using spermine induced aggregated silver nanoparticles as the SERS substrate, is investigated by analyzing the labels separately and in mixtures. Comparison studies were also undertaken using the dyes in their free isothiocyanate forms, fluorescein isothiocyanate (F-ITC) and tetramethylrhodamine isothiocyanate (TR-ITC). When the two dyes are premixed prior to the addition of nanoparticles, TAMRA exerts a strong masking effect over FAM due to a stronger affinity for the metal surface. When parameters such as order of analyte addition, analysis time, and analyte concentration are investigated, the masking effect of TAMRA is still observed but the extent changes depending on the experimental parameters. By using bootstrap estimation of changes in SERS peak intensity, a greater insight has been achieved into the surface affinity of the two dyes as well as how they interact with each other. It has been shown that the order of addition of the analytes is important and that specific dye related interactions occur, which could greatly affect the observed SERS spectra. SERS has been used successfully for the simultaneous detection of several analytes; however, this work has highlighted the significant factors that must be taken into consideration when planning a multiple analyte assay.


Asunto(s)
ADN/química , Fluoresceína/química , Colorantes Fluorescentes/química , Rodaminas/química , Espectrometría Raman/métodos , Secuencia de Bases , Estructura Molecular , Propiedades de Superficie
15.
Proc Math Phys Eng Sci ; 471(2179): 20150142, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26346321

RESUMEN

We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

16.
J Comput Graph Stat ; 24(2): 357-378, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26240515

RESUMEN

Hamiltonian Monte Carlo (HMC) improves the computational e ciency of the Metropolis-Hastings algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the performance of HMC by exploiting the geometric properties of the parameter space. However, the geometric integrator used for RHMC involves implicit equations that require fixed-point iterations. In some cases, the computational overhead for solving implicit equations undermines RHMC's benefits. In an attempt to circumvent this problem, we propose an explicit integrator that replaces the momentum variable in RHMC by velocity. We show that the resulting transformation is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. Experimental results suggests that our method improves RHMC's overall computational e ciency in the cases considered. All computer programs and data sets are available online (http://www.ics.uci.edu/~babaks/Site/Codes.html) in order to allow replication of the results reported in this paper.

17.
Nucleic Acids Res ; 43(5): 2780-9, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25712098

RESUMEN

Cell cycle progression is orchestrated by E2F factors. We previously reported that in ETS-driven cancers of the bone and prostate, activating E2F3 cooperates with ETS on target promoters. The mechanism of target co-regulation remained unknown. Using RNAi and time-resolved chromatin-immunoprecipitation in Ewing sarcoma we report replacement of E2F3/pRB by constitutively expressed repressive E2F4/p130 complexes on target genes upon EWS-FLI1 modulation. Using mathematical modeling we interrogated four alternative explanatory models for the observed EWS-FLI1/E2F3 cooperation based on longitudinal E2F target and regulating transcription factor expression analysis. Bayesian model selection revealed the formation of a synergistic complex between EWS-FLI1 and E2F3 as the by far most likely mechanism explaining the observed kinetics of E2F target induction. Consequently we propose that aberrant cell cycle activation in Ewing sarcoma is due to the de-repression of E2F targets as a consequence of transcriptional induction and physical recruitment of E2F3 by EWS-FLI1 replacing E2F4 on their target promoters.


Asunto(s)
Factor de Transcripción E2F3/metabolismo , Factor de Transcripción E2F4/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Algoritmos , Teorema de Bayes , Ciclo Celular/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F4/genética , Humanos , Immunoblotting , Modelos Genéticos , Proteínas de Fusión Oncogénica/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteína Proto-Oncogénica c-fli-1/genética , Interferencia de ARN , Proteína EWS de Unión a ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología
18.
Bioinformatics ; 30(20): 2991-2, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25005749

RESUMEN

SUMMARY: We present a new C implementation of an advanced Markov chain Monte Carlo (MCMC) method for the sampling of ordinary differential equation (ode) model parameters. The software mcmc_clib uses the simplified manifold Metropolis-adjusted Langevin algorithm (SMMALA), which is locally adaptive; it uses the parameter manifold's geometry (the Fisher information) to make efficient moves. This adaptation does not diminish with MC length, which is highly advantageous compared with adaptive Metropolis techniques when the parameters have large correlations and/or posteriors substantially differ from multivariate Gaussians. The software is standalone (not a toolbox), though dependencies include the GNU scientific library and sundials libraries for ode integration and sensitivity analysis. AVAILABILITY AND IMPLEMENTATION: The source code and binary files are freely available for download at http://a-kramer.github.io/mcmc_clib/. This also includes example files and data. A detailed documentation, an example model and user manual are provided with the software. CONTACT: andrei.kramer@ist.uni-stuttgart.de.


Asunto(s)
Algoritmos , Cadenas de Markov , Modelos Estadísticos , Método de Montecarlo , Programas Informáticos
19.
PLoS One ; 9(6): e99458, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24926959

RESUMEN

INTRODUCTION: Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. METHODS: In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. FINDINGS: We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. CONCLUSIONS: The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Nanopartículas del Metal/química , Metalotioneína/genética , Oligonucleótidos Antisentido/farmacología , ADN de Cadena Simple/farmacología , Oro , Células HeLa , Humanos , Nanopartículas del Metal/ultraestructura , Metalotioneína/metabolismo , ARN Mensajero/análisis , ARN Interferente Pequeño/farmacología , Transfección
20.
Adv Microb Physiol ; 64: 115-43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24797926

RESUMEN

The African trypanosome, Trypanosoma brucei, is a unicellular parasite causing African Trypanosomiasis (sleeping sickness in humans and nagana in animals). Due to some of its unique properties, it has emerged as a popular model organism in systems biology. A predictive quantitative model of glycolysis in the bloodstream form of the parasite has been constructed and updated several times. The Silicon Trypanosome is a project that brings together modellers and experimentalists to improve and extend this core model with new pathways and additional levels of regulation. These new extensions and analyses use computational methods that explicitly take different levels of uncertainty into account. During this project, numerous tools and techniques have been developed for this purpose, which can now be used for a wide range of different studies in systems biology.


Asunto(s)
Biología de Sistemas , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Animales , Glucólisis , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...