Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864737

RESUMEN

Filamentous cyanobacteria are one of the oldest and today still most abundant lifeforms on earth, with manifold implications in ecology and economics. Their flexible filaments, often several hundred cells long, exhibit gliding motility in contact with solid surfaces. The underlying force generating mechanism is not yet understood. Here, we demonstrate that propulsion forces and friction coefficients are strongly coupled in the gliding motility of filamentous cyanobacteria. We directly measure their bending moduli using micropipette force sensors, and quantify propulsion and friction forces by analyzing their self-buckling behavior, complemented with analytical theory and simulations. The results indicate that slime extrusion unlikely generates the gliding forces, but support adhesion-based hypotheses, similar to the better-studied single-celled myxobacteria. The critical self-buckling lengths align well with the peaks of natural length distributions, indicating the importance of self-buckling for the organization of their collective in natural and artificial settings.


Asunto(s)
Cianobacterias , Cianobacterias/fisiología , Fenómenos Biomecánicos , Fricción , Movimiento
2.
Elife ; 92020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33300874

RESUMEN

For the unicellular alga Chlamydomonas reinhardtii, the presence of N-glycosylated proteins on the surface of two flagella is crucial for both cell-cell interaction during mating and flagellar surface adhesion. However, it is not known whether only the presence or also the composition of N-glycans attached to respective proteins is important for these processes. To this end, we tested several C. reinhardtii insertional mutants and a CRISPR/Cas9 knockout mutant of xylosyltransferase 1A, all possessing altered N-glycan compositions. Taking advantage of atomic force microscopy and micropipette force measurements, our data revealed that reduction in N-glycan complexity impedes the adhesion force required for binding the flagella to surfaces. This results in impaired polystyrene bead binding and transport but not gliding of cells on solid surfaces. Notably, assembly, intraflagellar transport, and protein import into flagella are not affected by altered N-glycosylation. Thus, we conclude that proper N-glycosylation of flagellar proteins is crucial for adhering C. reinhardtii cells onto surfaces, indicating that N-glycans mediate surface adhesion via direct surface contact.


Asunto(s)
Polisacáridos/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Adhesión Celular , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Edición Génica , Técnicas de Inactivación de Genes , Glicosilación , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...