Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cheminform ; 5(1): 50, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24341870

RESUMEN

BACKGROUND: Virtual screening in the form of similarity rankings is often applied in the early drug discovery process to rank and prioritize compounds from a database. This similarity ranking can be achieved with structural similarity measures. However, their general nature can lead to insufficient performance in some application cases. In this paper, we provide a link between ranking-based virtual screening and fragment-based data mining methods. The inclusion of binding-relevant background knowledge into a structural similarity measure improves the quality of the similarity rankings. This background knowledge in the form of binding relevant substructures can either be derived by hand selection or by automated fragment-based data mining methods. RESULTS: In virtual screening experiments we show that our approach clearly improves enrichment factors with both applied variants of our approach: the extension of the structural similarity measure with background knowledge in the form of a hand-selected relevant substructure or the extension of the similarity measure with background knowledge derived with data mining methods. CONCLUSION: Our study shows that adding binding relevant background knowledge can lead to significantly improved similarity rankings in virtual screening and that even basic data mining approaches can lead to competitive results making hand-selection of the background knowledge less crucial. This is especially important in drug discovery and development projects where no receptor structure is available or more frequently no verified binding mode is known and mostly ligand based approaches can be applied to generate hit compounds.

2.
J Chem Inf Model ; 53(5): 1017-25, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23489025

RESUMEN

The concept of molecular similarity is one of the most central in the fields of predictive toxicology and quantitative structure-activity relationship (QSAR) research. Many toxicological responses result from a multimechanistic process and, consequently, structural diversity among the active compounds is likely. Combining this knowledge, we introduce similarity boosted QSAR modeling, where we calculate molecular descriptors using similarities with respect to representative reference compounds to aid a statistical learning algorithm in distinguishing between different structural classes. We present three approaches for the selection of reference compounds, one by literature search and two by clustering. Our experimental evaluation on seven publicly available data sets shows that the similarity descriptors used on their own perform quite well compared to structural descriptors. We show that the combination of similarity and structural descriptors enhances the performance and that a simple stacking approach is able to use the complementary information encoded by the different descriptor sets to further improve predictive results. All software necessary for our experiments is available within the cheminformatics software framework AZOrange.


Asunto(s)
Informática/métodos , Relación Estructura-Actividad Cuantitativa , Toxicología
3.
Mol Inform ; 30(2-3): 205-18, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-27466774

RESUMEN

We present a novel (Q)SAR approach that detects groups of structures for local (Q)SAR modeling. The algorithm combines clustering and classification or regression for making predictions on chemical structure data. A clustering procedure producing clusters with shared structural scaffolds is applied as a preprocessing step, before a (local) model is learned for each relevant cluster. Instead of using only one global model (classical approach), we use weighted local models for predictions of query compounds dependent on cluster memberships. The approach is evaluated and compared against standard statistical (Q)SAR algorithms on various datasets. The results show that in many cases the application of local models significantly improves the predictive power of the derived (Q)SAR models compared to the classical approach, to models that are induced by a fingerprint-based or a hierarchical clustering approach and to locally weighted learning.

4.
J Cheminform ; 2(1): 7, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20807436

RESUMEN

OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals.The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation.Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.

5.
Bioinformatics ; 23(19): 2536-42, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17150993

RESUMEN

MOTIVATION: Obtaining soluble proteins in sufficient concentrations is a recurring limiting factor in various experimental studies. Solubility is an individual trait of proteins which, under a given set of experimental conditions, is determined by their amino acid sequence. Accurate theoretical prediction of solubility from sequence is instrumental for setting priorities on targets in large-scale proteomics projects. RESULTS: We present a machine-learning approach called PROSO to assess the chance of a protein to be soluble upon heterologous expression in Escherichia coli based on its amino acid composition. The classification algorithm is organized as a two-layered structure in which the output of primary support vector machine (SVM) classifiers serves as input for a secondary Naive Bayes classifier. Experimental progress information from the TargetDB database as well as previously published datasets were used as the source of training data. In comparison with previously published methods our classification algorithm possesses improved discriminatory capacity characterized by the Matthews Correlation Coefficient (MCC) of 0.434 between predicted and known solubility states and the overall prediction accuracy of 72% (75 and 68% for positive and negative class, respectively). We also provide experimental verification of our predictions using solubility measurements for 31 mutational variants of two different proteins.


Asunto(s)
Inteligencia Artificial , Modelos Químicos , Reconocimiento de Normas Patrones Automatizadas/métodos , Proteínas/química , Análisis de Secuencia de Proteína/métodos , Solventes/química , Secuencia de Aminoácidos , Simulación por Computador , Datos de Secuencia Molecular , Alineación de Secuencia/métodos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...