Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38844126

RESUMEN

Abuse-related drug usage is a public health issue. Drosophila melanogaster has been used as an animal model to study the biological effects of these psychoactive substances in preclinical studies. Our objective in this review is to evaluate the adverse effects produced by cocaine, nicotine, and marijuana during the development of D. melanogaster. We searched experimental studies in which D. melanogaster was exposed to these three psychoactive drugs in seven online databases up to January 2023. Two reviewers independently extracted the data. Fifty-one studies met eligibility criteria and were included in the data extraction: nicotine (n = 26), cocaine (n = 20), and marijuana (n = 5). Fifteen studies were eligible for meta-analysis. Low doses (∼0.6 mM) of nicotine increased locomotor activity in fruit flies, while high doses (≥3 mM) led to a decrease. Similarly, exposure to cocaine increased locomotor activity, resulting in decreased climbing response in D. melanogaster. Studies with exposure to marijuana did not present a profile for our meta-analysis. However, this drug has been less associated with locomotor changes, but alterations in body weight and fat content and changes in cardiac function. Our analyses have shown that fruit flies exposed to drugs of abuse during different developmental stages, such as larvae and adults, exhibit molecular, morphological, behavioral, and survival changes that are dependent on the dosage. These phenotypes resemble the adverse effects of psychoactive substances in clinical medicine.


Asunto(s)
Cocaína , Drosophila melanogaster , Nicotina , Animales , Drosophila melanogaster/efectos de los fármacos , Cocaína/farmacología , Cocaína/efectos adversos , Nicotina/farmacología , Nicotina/efectos adversos , Locomoción/efectos de los fármacos , Cannabis/efectos adversos
2.
Epilepsy Behav ; 156: 109832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761450

RESUMEN

Crack cocaine is a highly addictive and potent stimulant drug. Animal studies have shown that the cholinergic system plays a role in neurotoxicity induced by cocaine or its active metabolites inhalation. Behavioral alterations associated with crack cocaine use include hyperactivity, depressed mood, and decreased seizure threshold. Here we evaluate the acetylcholinesterase (AChE) and reactive oxygen species (ROS) activity, behavioral profile, and the threshold for epileptic seizures in rats that received intrahippocampal pilocarpine (H-PILO) followed by exposure to crack cocaine (H-PILO + CRACK). Animals exposed to H-PILO + CRACK demonstrated increased severity and frequency of limbic seizures. The AChE activity was reduced in the groups exposed to crack cocaine alone (CRACK) and H-PILO + CRACK, whereas levels of ROS remained unchanged. In addition, crack cocaine exposure increased vertical locomotor activity, without changing water and sucrose intake. Short-term memory consolidation remained unchanged after H-PILO, H-PILO + CRACK, and CRACK administration. Overall, our data suggest that crack cocaine inhalation reduced the threshold for epileptic seizures in rats submitted to low doses of pilocarpine through the inhibition of AChE. Taken together, our findings can be useful in the development of effective strategies for preventing and treating the harmful effects of cocaine and crack cocaine on the central nervous system.


Asunto(s)
Acetilcolinesterasa , Cocaína Crack , Pilocarpina , Ratas Wistar , Convulsiones , Animales , Masculino , Acetilcolinesterasa/metabolismo , Ratas , Pilocarpina/toxicidad , Convulsiones/inducido químicamente , Administración por Inhalación , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Actividad Motora/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
3.
Noncoding RNA Res ; 9(2): 523-535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511059

RESUMEN

The discovery of disease-specific biomarkers, such as microRNAs (miRNAs), holds the potential to transform the landscape of Amyotrophic Lateral Sclerosis (ALS) by facilitating timely diagnosis, monitoring treatment response, and accelerating drug discovery. Such advancement could ultimately improve the quality of life and survival rates for ALS patients. Despite more than a decade of research, no miRNA biomarker candidate has been translated into clinical practice. We conducted a systematic review and meta-analysis to quantitatively synthesize data from original studies that analyzed miRNA expression from liquid biopsies via PCR and compared them to healthy controls. Our analysis encompasses 807 miRNA observations from 31 studies, stratified according to their source tissue. We identified consistently dysregulated miRNAs in serum (hsa-miR-3665, -4530, -4745-5p, -206); blood (hsa-miR-338-3p, -183-5p); cerebrospinal fluid (hsa-miR-34a-3p); plasma (hsa-miR-206); and neural-enriched extracellular vesicles from plasma (hsa-miR-146a-5p, -151a-5p, -10b-5p, -29b-3p, and -4454). The meta-analyses provided further support for the upregulation of hsa-miR-206, hsa-miR-338-3p, hsa-miR-146a-5p and hsa-miR-151a-5p, and downregulation of hsa-miR-183-5p, hsa-miR-10b-5p, hsa-miR-29b-3p, and hsa-miR-4454 as consistent indicators of ALS across independent studies. Our findings provide valuable insights into the current understanding of miRNAs' dysregulated expression in ALS patients and on the researchers' choices of methodology. This work contributes to the ongoing efforts towards discovering disease-specific biomarkers.

4.
Chem Biol Interact ; 391: 110874, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38311162

RESUMEN

Layered double hydroxides (LDHs) have been employed as nano-sized carriers for therapeutic/bio-active molecules, including small interfering RNAs (siRNAs). However, the potential of LDHs nanoparticles for an efficient and safe antisense oligonucleotide (AMO) delivery still requires studies. In this research, we have tested the suitability of a Mg-Al-LDH-based nanocarrier loaded with a miRNA-196b-5p inhibitor. LDHs (and LDH-Oligo complex) were synthesized by the coprecipitation method followed by physicochemical characterization as hydrodynamic size, surface charge, crystallinity, and chemical groups. Thymic endothelial cell line (tEnd.1) were transfected with LDH-Oligo and were evaluated for i. cell viability by MTT, trypan blue, and propidium iodide assays; ii. transfection efficiency by flow cytometry, and iii. depletion of miRNA-196b-5p by RT-qPCR. In addition, Drosophila melanogaster larvae were fed LDHs and evaluated for: i. larval motility; ii. pupation rate; iii. larval-pupal transition; iv. lethality, and v. emergence rate. We demonstrated that LDHs nanoparticles are stable in aqueous solutions and exhibit a regular hexagonal shape. The LDH-AMO complex showed a transfection efficiency of 93.95 ± 2.15 % and induced a significant depletion of miRNA-196b-5p 48h after transfection. No cytotoxic effects were detected in tEnd.1 cells at concentrations up to 50 µg/ml, as well as in Drosophila exposed up to 500 µg of LDH. In conclusion, our data suggest that LDHs are biocompatible and efficient carriers for miRNA inhibitors and can be used as a viable and effective tool in functional miRNA inhibition assays.


Asunto(s)
Antineoplásicos , MicroARNs , Animales , MicroARNs/genética , Drosophila melanogaster , Hidróxidos/química , Agua , ARN Interferente Pequeño
5.
Sleep Med ; 106: 90-96, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075531

RESUMEN

OBJECTIVE/BACKGROUND: Studies on circadian rhythms throughout development and their physiological and behavioral impacts at early stages are still scarce. Previous studies have shown that mother-infant interactions are important for both sleep and child development. In this cross-sectional study we investigated whether infants' chronotype, sleep and development were associated with their respective mothers' chronotype, sleep, mental health and socioeconomic status. PATIENTS/METHODS: the following were used to evaluate mothers: the Morningness-Eveningness Questionnaire (MEQ), Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS) and Self-Reporting Questionnaire 20 (SRQ-20). To assess the infants' characteristics, the following were used: the 19th question from the Morningness-Eveningness Questionnaire (MEQ), infant nocturnal midpoint of sleep (iMSF), Brief Infant Sleep Questionnaire (BISQ) and Ages and Stages Questionnaire-3 (ASQ3). Socioeconomic aspects were assessed using the Brazilian Economic Class Criterion of the Brazilian Association of Research Companies (ABEP). RESULTS: A hundred and eight mother-infant dyads participated in the study. Sleep disorders were observed in 38 (35%) infants and atypical development (ASQ3) in 35 (32%). The infants' sleep phases were partially explained by the mother's chronotype. Infants' sleep duration was negatively correlated with sleep latency, which was higher in the group with atypical development. Mothers of infants with sleep disorders or discordant chronotypes (32%) had higher Pittsburgh scores (worse sleep quality) and higher SRQ-20 scores (screen for Common Mental Disorders). CONCLUSIONS: We found evidence for the contribution of sleep quality and chronotypes to mothers' mental health and infant development. However, further studies are needed to confirm the influence of sleep and circadian phenotypes in the early stages.


Asunto(s)
Madres , Trastornos del Sueño-Vigilia , Humanos , Femenino , Calidad del Sueño , Desarrollo Infantil , Cronotipo , Salud Mental , Estudios Transversales , Sueño/fisiología , Ritmo Circadiano/fisiología , Encuestas y Cuestionarios
6.
Brain Behav Immun ; 108: 118-134, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36427808

RESUMEN

Traumatic brain injury (TBI) leads to lasting brain dysfunction with chronic neuroinflammation typified by nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3) inflammasome activation in microglia. This study probed whether a single intranasal (IN) administration of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) naturally enriched with activated microglia-modulating miRNAs can avert chronic adverse outcomes of TBI. Small RNA sequencing confirmed the enrichment of miRNAs capable of modulating activated microglia in hMSC-EV cargo. IN administration of hMSC-EVs into adult mice ninety minutes after the induction of a unilateral controlled cortical impact injury resulted in their incorporation into neurons and microglia in both injured and contralateral hemispheres. A single higher dose hMSC-EV treatment also inhibited NLRP3 inflammasome activation after TBI, evidenced by reduced NLRP3, apoptosis-associated speck-like protein containing a CARD, activated caspase-1, interleukin-1 beta, and IL-18 levels in the injured brain. Such inhibition in the acute phase of TBI endured in the chronic phase, which could also be gleaned from diminished NLRP3 inflammasome activation in microglia of TBI mice receiving hMSC-EVs. Proteomic analysis and validation revealed that higher dose hMSC-EV treatment thwarted the chronic activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway by IL-18, which decreased the release of proinflammatory cytokines. Inhibition of the chronic activation of NLRP3-p38/MAPK signaling after TBI also prevented long-term cognitive and mood impairments. Notably, the animals receiving higher doses of hMSC-EVs after TBI displayed better cognitive and mood function in all behavioral tests than animals receiving the vehicle after TBI. A lower dose of hMSC-EV treatment also partially improved cognitive and mood function. Thus, an optimal IN dose of hMSC-EVs naturally enriched with activated microglia-modulating miRNAs can inhibit the chronic activation of NLRP3-p38/MAPK signaling after TBI and prevent lasting brain dysfunction.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Vesículas Extracelulares , MicroARNs , Proteína Quinasa 14 Activada por Mitógenos , Animales , Humanos , Ratones , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Inflamasomas/metabolismo , Interleucina-18/metabolismo , MicroARNs/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteómica , Transducción de Señal , Células Madre Mesenquimatosas
7.
Eur J Nutr ; 62(2): 1041-1050, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36385314

RESUMEN

PURPOSE: This study investigated the influence of the different genotypes of ADORA2A (1976 C > T, rs 5751876), alone or pooled with CYP1A2 (163 C > A rs 762551) genotypes, on the ergogenic effects of caffeine (CAF) on various aspects of physical performance in male adolescent athletes. METHODS: Ninety male adolescent athletes (age = 15.5 ± 2 years) were classified according to their genotypes for 1976 C > T ADORA2A (TT homozygous or CADORA2A allele carriers) and 163 C > A CYP1A2 (AA homozygous or CCYP1A2 allele carriers). Participants were further divided in four groups (1-TTADORA2A + AACYP1A2; 2-TTADORA2A + AC/CCCYP1A2; 3-AACYP1A2 + CT/CCADORA2A;4-AC/CCCYP1A2 + CT/CCADORA2A). Using a randomized, crossover, counterbalanced, and double-blind design, participants ingested CAF (6 mg kg-1) or a placebo (PLA, 300 mg of cellulose) one hour before performing a sequence of physical tests: handgrip strength, agility test, countermovement jump (CMJ), Spike Jump (SJ), sit-ups, push-ups, and the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). RESULTS: CAF enhanced handgrip strength (CAF: 35.0 ± 9.2 kg force; PLA: 33.5 ± 8.9 kg force; p = 0.050), CMJ height (CAF: 49.6 ± 12.3 cm; PLA: 48.3 ± 13.6 cm; p = 0.013), SJ height (CAF: 54.7 ± 13.3 cm; PLA: 53.1 ± 14.8 cm; p = 0.013), number of sit-ups (CAF: 37 ± 8; PLA: 35 ± 8; p = 0.001), and distance covered on the Yoyo IR1 test (CAF: 991.6 ± 371.0 m; PLA: 896.0 ± 311.0 m; p = 0.001), This CAF-induced improvement on exercise performance was, however, independent of genotypes groups (all p > 0.05). CAF had no effect on agility (CAF: 15.8 ± 1.2 s; PLA: 15.9 ± 1.3 s; p = 0.070) and push-up (CAF: 26.6 ± 12.0; PLA: 25.0 ± 11.0; p = 0.280) tests. CONCLUSION: The acute caffeine intake of 6.0 mg.kg-1 improves several aspects of physical performance, which seems to be independent of ADORA2A genotypes, alone or in combination with CYP1A2 genotypes.


Asunto(s)
Rendimiento Atlético , Cafeína , Humanos , Masculino , Adolescente , Citocromo P-450 CYP1A2 , Fuerza de la Mano , Genotipo , Atletas , Método Doble Ciego , Estudios Cruzados , Poliésteres
8.
J Inorg Biochem ; 237: 112012, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36162209

RESUMEN

A significant fraction of patients are affected by persistent fear and anxiety. Currently, there are several anxiolytic drug options, however their clinical outcomes do not fully manage the symptoms. Here, we evaluated the effects of a bromazepam­palladium derivative [2-{(7-bromo-2-oxo-1,3-dihydro-2H-1,4-benzodiazepin-5-il)pyridinyl-κ2-N,N}chloropalladium(II)], [(BMZ)PdCl2], on fear/anxiety and memory-related behavior in mice. For this, female Swiss mice were treated intraperitoneally (i.p.) with saline (NaCl 0.9%) or [(BMZ)PdCl2] (0.5, 5.0, or 50 µg/kg). After 30 min, different tests were performed to evaluate anxiety, locomotion, and memory. We also evaluated the acute toxicity of [(BMZ)PdCl2] using a cell viability assay (neutral red uptake assay), and whether the drugs mechanism of action involves the γ-aminobutyric acid type A (GABAA) receptor complex by pre-treating animals with flumazenil (1.0 mg/kg, i.p., a competitive antagonist of GABAA-binding site). Our results demonstrate that [(BMZ)PdCl2] induces an anxiolytic-like phenotype in the elevated plus-maze test and that this effect can be blocked by flumazenil. Furthermore, there were no behavioral alterations induced by [(BMZ)PdCl2], as evaluated in the light-dark box, open field, and step-down passive avoidance tests. In the acute toxicity assay, [(BMZ)PdCl2] presented IC50 and LD50 values of 218 ± 60 µg/mL and 780 ± 80 mg/kg, respectively, and GSH category 4. Taken together, our results show that the anxiolytic-like effect of acute treatment with [(BMZ)PdCl2] occurs through the modulation of the benzodiazepine site in the GABAA receptor complex. Moreover, we show indications that [(BMZ)PdCl2] does not promote sedation and amnesia and presents the same toxicity as the bromazepam prototype.


Asunto(s)
Ansiolíticos , Bromazepam , Animales , Ratones , Femenino , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Flumazenil/farmacología , Bromazepam/farmacología , Paladio/farmacología , Ácido gamma-Aminobutírico , Conducta Animal , Aprendizaje por Laberinto
9.
Mol Neurobiol ; 59(12): 7354-7369, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36171480

RESUMEN

Intrahippocampal pilocarpine microinjection (H-PILO) induces status epilepticus (SE) that can lead to spontaneous recurrent seizures (SRS) and neurodegeneration in rodents. Studies using animal models have indicated that lectins mediate a variety of biological activities with neuronal benefits, especially galectin-1 (GAL-1), which has been identified as an effective neuroprotective compound. GAL-1 is associated with the regulation of cell adhesion, proliferation, programmed cell death, and immune responses, as well as attenuating neuroinflammation. Here, we administrated GAL-1 to Wistar rats and evaluated the severity of the SE, neurodegenerative and inflammatory patterns in the hippocampal formation. Administration of GAL-1 caused a reduction in the number of class 2 and 4 seizures, indicating a decrease in seizure severity. Furthermore, we observed a reduction in inflammation and neurodegeneration 24 h and 15 days after SE. Overall, these results suggest that GAL-1 has a neuroprotective effect in the early stage of epileptogenesis and provides new insights into the roles of exogenous lectins in temporal lobe epilepsy (TLE).


Asunto(s)
Epilepsia del Lóbulo Temporal , Fármacos Neuroprotectores , Estado Epiléptico , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Galectina 1/farmacología , Galectina 1/uso terapéutico , Galectina 1/metabolismo , Ratas Wistar , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Pilocarpina , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Convulsiones/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad
10.
Mol Neurobiol ; 59(10): 6429-6446, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962889

RESUMEN

Evidence supports that the gut microbiota and bacteria-dependent metabolites influence the maintenance of epileptic brain activity. However, the alterations in the gut microbiota between epileptic versus healthy individuals are poorly understood. We used a multi-omic approach to evaluate the changes in the composition of gut metagenome as well in the fecal metabolomic profile in rats before and after being submitted to status epilepticus (SE)-induced temporal lobe epilepsy (TLE). The 16S ribosomal RNA (rRNA) sequencing of fecal samples coupled to bioinformatic analysis revealed taxonomic, compositional, and functional shifts in epileptic rats. The species richness (Chao1 index) was significantly lower in the post-TLE group, and the ß-diversity analysis revealed clustering separated from the pre-TLE group. The taxonomic abundance analysis showed a significant increase of phylum Desulfobacterota and a decrease of Patescibacteria in the post-TLE group. The DESEq2 and LEfSe analysis resulted in 18 genera significantly enriched between post-TLE and pre-TLE groups at the genus level. We observed that epileptic rats present a peculiar metabolic phenotype, including a lower concentration of D-glucose and L-lactic acid and a higher concentration of L-glutamic acid and glycine. The microbiota-host metabolic correlation analysis showed that the genera differentially abundant in post-TLE rats are associated with the altered metabolites, especially the proinflammatory Desulfovibrio and Marvinbryantia, which were enriched in epileptic animals and positively correlated with these excitatory neurotransmitters and carbohydrate metabolites. Therefore, our data revealed a correlation between dysbacteriosis in epileptic animals and fecal metabolites that are known to be relevant for maintaining epileptic brain activity by enhancing chronic inflammation, an excitatory-inhibitory imbalance, and/or a metabolic disturbance. These data are promising and suggest that targeting the gut microbiota could provide a novel avenue for preventing and treating acquired epilepsy. However, the causal relationship between these microbial/metabolite components and the SRS occurrence still needs further exploration.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Microbioma Gastrointestinal , Animales , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Litio , Pilocarpina , Ratas
11.
Eur Neuropsychopharmacol ; 44: 34-50, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33454149

RESUMEN

Crack users suffer the effects of cocaine present in the drug and the action of other active compounds from its pyrolysis. An emergent fact is an increase in the number of pregnant crack cocaine users. Studies suggest that crack cocaine and its metabolites cross the placenta, promoting premature birth, fever, irritability, sweating, and seizures in the early months of life. In children, the effects of crack cocaine have been associated with cognitive deficits, difficulty in verbalization, aggressiveness, and depression, besides enhancing the susceptibility to epileptic seizures, including status epilepticus (SE) in adulthood. Therefore, we investigated the effect of maternal exposure to smoke crack cocaine on several behavioral parameters in the offspring during adulthood. A series of behavioral tests and intrahippocampal pilocarpine (H-PILO) microinjection at sub-convulsive and convulsive doses in a rat model demonstrated that exposure to crack cocaine during the embryonic period leads to anxiogenic-like behavior and long-term memory impairment in both genders and promotes depressive-like behavior in the female. Besides, crack cocaine offspring exposed to a sub-convulsive H-PILO dose showed higher susceptibility to SE, increased seizure frequency, and neurodegeneration, while animals that received a convulsive dose of H-PILO displayed no alteration in SE severity. Taken together, our data suggest that crack cocaine exposure during the gestational period leads to an increased predilection for anxiety and depression, long-term memory deficits, and reduction in the threshold for developing epileptic seizures associated with neuronal death, which predispose crack cocaine babies to develop neuropsychological disorders.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína Crack , Epilepsia , Estado Epiléptico , Animales , Ansiedad/inducido químicamente , Cocaína Crack/toxicidad , Femenino , Masculino , Trastornos de la Memoria/inducido químicamente , Pilocarpina/toxicidad , Embarazo , Ratas , Convulsiones/inducido químicamente
12.
Mol Neurobiol ; 58(3): 1217-1236, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33123979

RESUMEN

Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 µL) or glucose (GLU; 1, 2 or 3 mM, 1 µL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.


Asunto(s)
Glucosa/metabolismo , Hipocampo/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Muerte Celular , Hipocampo/enzimología , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Consolidación de la Memoria , Neuronas/patología , Estrés Oxidativo , Pilocarpina , Ratas Wistar , Índice de Severidad de la Enfermedad , Transportador 1 de Sodio-Glucosa/metabolismo , Estado Epiléptico/fisiopatología
13.
Mol Neurobiol ; 58(2): 505-519, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32975651

RESUMEN

Status epilepticus (SE) can lead to serious neuronal damage and act as an initial trigger for epileptogenic processes that may lead to temporal lobe epilepsy (TLE). Besides promoting neurodegeneration, neuroinflammation, and abnormal neurogenesis, SE can generate an extensive hypometabolism in several brain areas and, consequently, reduce intracellular energy supply, such as adenosine triphosphate (ATP) molecules. Although some antiepileptic drugs show efficiency to terminate or reduce epileptic seizures, approximately 30% of TLE patients are refractory to regular antiepileptic drugs (AEDs). Modulation of glucose availability may provide a novel and robust alternative for treating seizures and neuronal damage that occurs during epileptogenesis; however, more detailed information remains unknown, especially under hypo- and hyperglycemic conditions. Here, we review several pathways of glucose metabolism activated during and after SE, as well as the effects of hypo- and hyperglycemia in the generation of self-sustained limbic seizures. Furthermore, this study suggests the control of glucose availability as a potential therapeutic tool for SE.


Asunto(s)
Glucosa/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Estado Epiléptico/complicaciones , Estado Epiléptico/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Proteínas de Transporte de Membrana/metabolismo , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/metabolismo
14.
Epilepsy Behav ; 112: 107469, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33181902

RESUMEN

The most common form of genetic generalized epilepsy (GGE) is juvenile myoclonic epilepsy (JME), which accounts for 5 to 10% of all epilepsy cases. The gene EFHC1 has been implicated as a putative cause of JME. However, it remains debatable whether testing for EFHC1 mutations should be included in the diagnostic epilepsy gene panels. To investigate the clinical utility of EFHC1 testing, we studied 125 individuals: 100 with JME and 25 with other GGEs. We amplified and sequenced all EFHC1 coding exons. Then, we predicted the pathogenicity or benign impact of the variants using the analyses proposed by the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP). Mutation screening revealed 11 missense variants in 44 probands with JME (44%) and one of the seven individuals with generalized tonic-clonic seizures on awakening (14%). Six of the 11 variants (54%) were classified as 'benign,' and the remaining variants were considered variants of uncertain significance (VUS). There is currently a limitation to test for genes that predispose an individual to complex, nonmonogenic phenotypes. Thus, we show suggestive evidence that EFHC1 testing lacks a scientific foundation based on the disputed nature of the gene-disease relationship and should be currently limited to research purposes.


Asunto(s)
Epilepsia Generalizada , Epilepsia Mioclónica Juvenil , Proteínas de Unión al Calcio/genética , Epilepsia Generalizada/genética , Humanos , Epilepsia Mioclónica Juvenil/genética , Linaje , Fenotipo
15.
J Extracell Vesicles ; 9(1): 1809064, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32944193

RESUMEN

Grafting of neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise for brain repair after injury or disease, but safety issues have hindered their clinical application. Employing nano-sized extracellular vesicles (EVs) derived from hiPSC-NSCs appears to be a safer alternative because they likely have similar neuroreparative properties as NSCs and are amenable for non-invasive administration as an autologous or allogeneic off-the-shelf product. However, reliable methods for isolation, characterization and testing the biological properties of EVs are critically needed for translation. We investigated signatures of miRNAs and proteins and the biological activity of EVs, isolated from hiPSC-NSCs through a combination of anion-exchange chromatography (AEC) and size-exclusion chromatography (SEC). AEC and SEC facilitated the isolation of EVs with intact ultrastructure and expressing CD9, CD63, CD81, ALIX and TSG 101. Small RNA sequencing, proteomic analysis, pathway analysis and validation of select miRNAs and proteins revealed that EVs were enriched with miRNAs and proteins involved in neuroprotective, anti-apoptotic, antioxidant, anti-inflammatory, blood-brain barrier repairing, neurogenic and Aß reducing activities. Besides, EVs comprised miRNAs and/or proteins capable of promoting synaptogenesis, synaptic plasticity and better cognitive function. Investigations using an in vitro macrophage assay and a mouse model of status epilepticus confirmed the anti-inflammatory activity of EVs. Furthermore, the intranasal administration of EVs resulted in the incorporation of EVs by neurons, microglia and astrocytes in virtually all adult rat and mouse brain regions, and enhancement of hippocampal neurogenesis. Thus, biologically active EVs containing miRNAs and proteins relevant to brain repair could be isolated from hiPSC-NSC cultures, making them a suitable biologic for treating neurodegenerative disorders.

16.
J Affect Disord ; 277: 260-270, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841827

RESUMEN

BACKGROUND: Evidences suggest that alterations in circadian rhythms trigger the development of mental disorders. Eveningness, sleep behavior, and circadian genes polymorphisms have been associated with depression and anxiety symptomatology. However, the mechanism underlying these interactions is not well understood. We investigated the contribution of diurnal preference, sleep habits, and PER3 VNTR polymorphism (rs57875989) to depression and anxiety symptoms in a Northeast sample from the Brazilian population. METHODS: Eight hundred and four young adults completed the Morningness-Eveningness (MEQ), Munich Chronotype (MCTQ), Center for Epidemiologic Studies - Depression (CES-D), and Beck Anxiety Inventory (BAI) questionnaires. All participants were genotyped and linear regression was performed to test the interactions between the genetic /behavioral variants and depression/ anxiety symptoms. RESULTS: Eveningness and sleep behaviors (bedtime, wake-up time, sleep duration, and midpoint of sleep) were correlated with depression symptomatology, specifically in somatic factors of the CES-D questionnaire. No correlation was found between diurnal preference/sleep habits with anxiety symptoms for both BAI total score and its factors. However, women with PER34/4 genotype showed less interpesonal affect in depression symptomatology and more anxiety symptoms in four factors of the BAI questionnaire. LIMITATIONS: Mainly because this study was based on self-report questionnaires and was limited to undergraduate students aging 18 to 30 years old. CONCLUSION: These results reinforce a role for sleep and diurnal preference in depression, and PER3 VNTR polymorphism in anxiety symptomatology, particularly in women.


Asunto(s)
Depresión , Proteínas Circadianas Period/genética , Adolescente , Adulto , Ansiedad/genética , Brasil , Ritmo Circadiano/genética , Depresión/genética , Femenino , Humanos , Repeticiones de Minisatélite/genética , Polimorfismo Genético/genética , Sueño/genética , Encuestas y Cuestionarios , Adulto Joven
17.
Chronobiol Int ; 37(11): 1662-1668, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32573265

RESUMEN

The association between chronotypes and season of birth (SOB) remains an inconclusive issue due, in some extension, to the lack of investigations of mediation mechanisms. We evaluated the association of photoperiod at birth (PAB) with chronotypes and sleep duration in Brazil (n = 810), and the mediating effect of meteorological factors, sex, age and rs4753426 polymorphism in the melatonin receptor MTNR1B. Longer PAB was associated with a delayed mid-sleep phase with a suppressive effect of maximum environmental temperature. No significant interactions were identified for the other variables. These findings suggest that photoperiod and environmental temperature modulate chronotype development at early stages.


Asunto(s)
Ritmo Circadiano , Fotoperiodo , Sueño , Brasil , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Temperatura
18.
Scand J Med Sci Sports ; 30(10): 1869-1877, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32538495

RESUMEN

PURPOSE: The purpose of this study was to investigate whether variations in 163 C > A CYP1A2 genotypes (rs 762 551) (AA, AC, and CC) modify the ergogenic effects of caffeine (CAF) on strength, power, muscular endurance, agility, and endurance in adolescent athletes. METHODS: One hundred adolescents (age = 15 ± 2 years) were recruited. Participants ingested CAF (6 mg.kg-1 ) or placebo (PLA, 300 mg of cellulose) 1 hour before performing a sequence of physical tests: handgrip strength, vertical jumps, agility test, sit-ups, push-ups, and the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). RESULTS: Compared to PLA, CAF enhanced (P < .05) sit-up (CAF = 37 ± 9; PLA = 35 ± 8 repetitions) and push-up repetitions (CAF = 26 ± 11; PLA = 24 ± 11 repetitions), and increased distance covered in Yo-Yo IR1 test (CAF = 1010.4 ± 378.9; PLA = 903.2 ± 325.7 m). There was no influence of CAF on handgrip strength (CAF = 35.1 ± 8.9; PLA = 33.7 ± 8.7 kgf), countermovement jump height (CAF = 49.3 ± 12.6; PLA = 47.9 ± 13.8 cm), spike jump height (CAF = 54.2 ± 13.6; PLA = 52.9 ± 14.5 cm), and time in agility test (CAF = 15.8 ± 1.1; PLA = 15.9 ± 1.3 s, P > .05). When present, the ergogenic effect of CAF was not dependent of genotype. CONCLUSION: CAF improves muscular endurance and aerobic performance in adolescent athletes, regardless of their 163 C > A CYP1A2 genotype.


Asunto(s)
Rendimiento Atlético/fisiología , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Citocromo P-450 CYP1A2/genética , Genotipo , Adolescente , Estudios Cruzados , Citocromo P-450 CYP1A2/sangre , Método Doble Ciego , Ejercicio Físico/fisiología , Fuerza de la Mano/fisiología , Humanos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Placebos/farmacología , Polimorfismo Genético
19.
Mol Neurobiol ; 57(3): 1674-1687, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31813125

RESUMEN

An initial precipitating injury in the brain, such as after status epilepticus (SE), evolves into chronic temporal lobe epilepsy (TLE). We investigated changes in the miRNA composition of extracellular vesicles (EVs) in the forebrain after the establishment of SE-induced chronic TLE. We induced SE in young Fischer 344 rats through graded intraperitoneal injections of kainic acid, which resulted in consistent spontaneous recurrent seizures at ~ 3 months post-SE. We isolated EVs from the entire forebrain of chronically epileptic rats and age-matched naïve control animals through an ultracentrifugation method and performed miRNA-sequencing studies to discern changes in the miRNA composition of forebrain-derived EVs in chronic epilepsy. EVs from both naïve and epileptic forebrains displayed spherical or cup-shaped morphology, a comparable size range, and CD63 expression but lacked the expression of a deep cellular marker GM130. However, miRNA-sequencing studies suggested downregulation of 3 miRNAs (miR-187-5p, miR-346, and miR-331-3p) and upregulation of 4 miRNAs (miR-490-5p, miR-376b-3p, miR-493-5p, and miR-124-5p) in EVs from epileptic forebrains with fold changes ranging from 1.5 to 2.4 (p < 0.0006; FDR < 0.05). By using geNorm and Normfinder software, we identified miR-487 and miR-221 as the best combination of reference genes for measurement of altered miRNAs found in the epileptic forebrain through qRT-PCR studies. The validation revealed that only miR-346 and miR-331-3p were significantly downregulated in EVs from the epileptic forebrain. The enrichment pathway analysis of these miRNAs showed an overrepresentation of signaling pathways that are linked to molecular mechanisms underlying chronic epilepsy, including GABA-ergic (miR-346 targets) and mTOR (miR-331-3p targets) systems. Thus, the packaging of two miRNAs into EVs in neural cells is considerably altered in chronic epilepsy. Functional studies on these two miRNAs may uncover their role in the pathophysiology and treatment of TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Vesículas Extracelulares/metabolismo , MicroARNs/genética , Estado Epiléptico/genética , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/metabolismo , Vesículas Extracelulares/genética , Masculino , Neuronas/metabolismo , Ratas Endogámicas F344 , Estado Epiléptico/metabolismo
20.
Aging Dis ; 10(5): 915-936, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31595192

RESUMEN

Many animal prototypes illustrating the various attributes of human temporal lobe epilepsy (TLE) are available. These models have been invaluable for comprehending multiple epileptogenic processes, modifications in electrophysiological properties, neuronal hyperexcitability, neurodegeneration, neural plasticity, and chronic neuroinflammation in TLE. Some models have also uncovered the efficacy of new antiepileptic drugs or biologics for alleviating epileptogenesis, cognitive impairments, or spontaneous recurrent seizures (SRS). Nonetheless, the suitability of these models for testing candidate therapeutics in conditions such as chronic TLE is debatable because of a lower frequency of SRS and an inconsistent pattern of SRS activity over days, weeks or months. An ideal prototype of chronic TLE for investigating novel therapeutics would need to display a large number of SRS with a dependable frequency and severity and related co-morbidities. This study presents a new kainic acid (KA) model of chronic TLE generated through induction of status epilepticus (SE) in 6-8 weeks old male F344 rats. A rigorous characterization in the chronic epilepsy period validated that the animal prototype mimicked the most salient features of robust chronic TLE. Animals displayed a constant frequency and intensity of SRS across weeks and months in the 5th and 6th month after SE, as well as cognitive and mood impairments. Moreover, SRS frequency displayed a rhythmic pattern with 24-hour periodicity and a consistently higher number of SRS in the daylight period. Besides, the model showed many neuropathological features of chronic TLE, which include a partial loss of inhibitory interneurons, reduced neurogenesis with persistent aberrant migration of newly born neurons, chronic neuroinflammation typified by hypertrophied astrocytes and rod-shaped microglia, and a significant aberrant mossy fiber sprouting in the hippocampus. This consistent chronic seizure model is ideal for investigating the efficacy of various antiepileptic drugs and biologics as well as understanding multiple pathophysiological mechanisms underlying chronic epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...